在平面直角坐標系xOy中,曲線y=x-6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
(Ⅰ).(Ⅱ)該直線存在,其方程為.
解析試題分析:(Ⅰ)曲線與軸的交點為,
與軸的交點為,
故可設的圓心為,
則有,
解得
則圓的半徑為,
所以圓的方程為 4分
(Ⅱ)假設直線存在,依題意,設直線方程為,
并設,
由,消去
得到方程
由已知可得,判別式
因此,
從而, ①
由于,可得
又,
所以 ②
由①,②得,滿足
所以該直線存在,其方程為 8分
考點:直線與圓的位置關系,直線方程,平面向量的數(shù)量積。
點評:中檔題,中檔題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。恰當?shù)倪\用圓中的“特征三角形”,轉化成點到直線的距離問題,更為簡潔。對存在性問題,常常是先假設存在,應用已知條件,確定其存在性,達到解體目的。本題較難。
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內,且到直線l:y=x-的距離為-,點M是直線l與圓C的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知A、B、C是橢圓W:上的三個點,O是坐標原點.
(I)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(II)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,點是橢圓()的左焦點,點,分別是橢圓的左頂點和上頂點,橢圓的離心率為,點在軸上,且,過點作斜率為的直線與由三點,,確定的圓相交于,兩點,滿足.
(1)若的面積為,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義:設分別為曲線和上的點,把兩點距離的最小值稱為曲線到的距離.
(1)求曲線到直線的距離;
(2)已知曲線到直線的距離為,求實數(shù)的值;
(3)求圓到曲線的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,分別是橢圓的左、右焦點,關于直線的對稱點是圓的一條直徑的兩個端點。
(Ⅰ)求圓的方程;
(Ⅱ)設過點的直線被橢圓和圓所截得的弦長分別為,。當最大時,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知:圓過橢圓的兩焦點,與橢圓有且僅有兩個公共點:直線與圓相切 ,與橢圓相交于A,B兩點記
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com