分析 利用奇函數(shù)f(x)=x3+x單調(diào)遞增的性質(zhì),可將不等式f(sinθ)+f(1-m)>0恒成立,轉(zhuǎn)化為sinθ>m-1恒成立,由0≤θ≤$\frac{π}{2}$,可求得實(shí)數(shù)m的取值范圍.
解答 解:∵f(x)=x3+x,
∴f(-x)=(-x)3+(-x)=-x3-x=-f(x),
∴函數(shù)f(x)=x3+x為奇函數(shù);
又f′(x)=3x2+1>0,
∴函數(shù)f(x)=x3+x為R上的單調(diào)遞增函數(shù).
∴f(sinθ)+f(1-m)>0恒成立?f(sinθ)>-f(1-m)=f(m-1)恒成立,
∴sinθ>m-1(0≤θ≤$\frac{π}{2}$)恒成立?m<sinθ+1恒成立,
由0≤θ≤$\frac{π}{2}$知,0≤sinθ≤1,1≤1+sinθ≤2,
故m∈(-∞,1),
故答案為:(-∞,1).
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性與單調(diào)性,突出考查轉(zhuǎn)化思想與恒成立問(wèn)題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 兩個(gè)長(zhǎng)方體 | B. | 兩個(gè)圓柱 | ||
C. | 一個(gè)長(zhǎng)方體和一個(gè)圓柱 | D. | 一個(gè)球和一個(gè)長(zhǎng)方體 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù) y=f (x)•g ( x) 的周期為 2 | |
B. | 函數(shù) y=f (x)•g ( x) 的最大值為 1 | |
C. | 將f (x)的圖象向左平移$\frac{π}{2}$個(gè)單位后得到 g(x)的圖象 | |
D. | y=f(x)+g(x)的一個(gè)對(duì)稱中心是($\frac{3}{4}π$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,5,7} | B. | {3,4,6} | C. | {6} | D. | U |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$π | B. | 6π | C. | 24π | D. | 2$\sqrt{6}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\sqrt{5}$ | C. | 2$\sqrt{2}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com