有下列四個命題:
①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,則a·b=|a|·|b|.其中真命題的個數(shù)是(  )
A.1B.2C.3D.4
A
①(a·b)2=|a|2·|b|2·cos2<a,b>≤|a|2·|b|2=a2·b2;
②|a+b|與|a-b|大小不確定;
③正確;
④a∥b,當(dāng)a,b同向時有a·b=|a|·|b|;當(dāng)a,b反向時有a·b=-|a|·|b|.故不正確.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1

(1)證明:AB=AC
(2)設(shè)二面角A-BD-C為60°,求B1C與平面BCD所成的角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱中,△ABC是正三角形,,平面平面,.

(1)證明:;
(2)證明:求二面角的余弦值;
(3)設(shè)點是平面內(nèi)的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC­A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求證:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)證明:在線段BC1上存在點D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,且滿足=== (如圖(1)),將△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,連接B、P(如圖(2)).

(1)求證: E⊥平面BEP;
(2)求直線E與平面BP所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在三棱柱ABC-A1B1C1中,底面為邊長為1的正三角形,側(cè)棱AA1⊥底面ABC,點D在棱BB1上,且BD=1,若AD與平面AA1C1C所成的角為α,則sinα的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點A(1,2,1),B(-1,3,4),D(1,1,1),若=2,則||的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個水平放置的平面圖形的斜二測直觀圖是直角梯形 (如圖所示),∠ABC=45°,AB=AD=1,DC⊥BC,則這個平面圖形的面積為(  )
A.+B.2+
C.+D.+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與A(-1,2,3),B(0,0,5)兩點距離相等的點P(x,y,z)的坐標(biāo)滿足的條件為__________.

查看答案和解析>>

同步練習(xí)冊答案