如圖,在三棱錐S-ABC中,E為棱SC的中點(diǎn),若AC=
3
AB且SA=SB=SC=AB=BC,則異面直線AC與BE所成的角為( 。  
A、30°B、45°
C、60°D、90°
考點(diǎn):異面直線及其所成的角
專題:空間位置關(guān)系與距離
分析:取SA的中點(diǎn)F,連接EF,BF,因?yàn)锳C∥EF,所以BEF(或其補(bǔ)角)為異面直線AC與BE所成的角,求出三角形的三邊,即可求出異面直線AC與BE所成的角.
解答: 解:取SA的中點(diǎn)F,連接EF,BF,
∵E為棱SC的中點(diǎn),
∴EF∥AC,
∴∠BEF(或其補(bǔ)角)為異面直線AC與BE所成的角,
∵AC=
3
AB且SA=SB=SC=AB=BC,設(shè)AB=2,
∴BE=EF=BF=
3
,
∴∠BEF=60°.
故選:C.
點(diǎn)評(píng):本題考查異面直線及其所成的角,考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,正確作出異面直線及其所成的角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把1+(1+x)+(1+x)2+…+(1+x)n展開成關(guān)于x的多項(xiàng)式,其各項(xiàng)系數(shù)和為an,則an=( 。
A、2n+1-1
B、2n-1
C、2n+2-1
D、與x有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xlog2x-3的零點(diǎn)所在區(qū)間為(k,k+1)(k∈Z),則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
的夾角為120°,|
a
|=2,|
b
|=3,記|
m
=3
a
-2
b
n
=2
a
+k
b

(1)若
m
n
,求實(shí)數(shù)k的值.
(2)是否存在實(shí)數(shù)k,使得
m
n
?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面給出的命題中:
①“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
②已知函數(shù)f(a)=∫
 
a
0
sinxdx,則f[f(
π
2
)]=1-cos1.
③已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
④將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)的圖象.
其中是真命題的有
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象在區(qū)間[a,b]上是連續(xù)不斷的,且滿足f(a)•f(b)<0(a,b∈R,a<b),則函數(shù)f(x)在(a,b)內(nèi)( 。
A、無(wú)零點(diǎn)
B、有且只有一個(gè)零點(diǎn)
C、至少有一個(gè)零點(diǎn)
D、無(wú)法確定有無(wú)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為4的正方形ABCD中,AC與BD相交于O.減去△AOB,將剩下部分沿OC、OD折疊,使OA、OB重合,則以A(B),C,D,O為頂點(diǎn)的四面體的體積為( 。
A、
8
2
3
B、
4
2
3
C、
2
2
3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高級(jí)中學(xué)高一特長(zhǎng)班有100名學(xué)生,其中學(xué)繪畫的學(xué)生有67人,學(xué)音樂的學(xué)生有45人,而學(xué)體育的學(xué)生既不能學(xué)繪畫,也不能學(xué)音樂,人數(shù)是21人,那么同時(shí)學(xué)繪畫和音樂的學(xué)生有
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)公式為an=
1
n2+3n+2
,其前n項(xiàng)和為
7
18
,則n為( 。
A、5B、6C、7D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案