已知焦點在軸上的雙曲線的漸近線方程是,則該雙曲線的離心率是(     )
A.B.
C.D.
A
本題考查雙曲線的標(biāo)準(zhǔn)方程,幾何性質(zhì).
因為雙曲線的焦點在軸上,漸近線方程是所以雙曲線方程是標(biāo)準(zhǔn)方程,可設(shè)為其漸近線方程為則該雙曲線的離心率是故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線lyk(x)與曲線x2y2=1(x>0)相交于A、B兩點,則直線l的傾斜角范圍是(     )
A.[0,π)B.(,)∪()
C.[0,)∪(,π)D.(,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的中心在坐標(biāo)原點,焦點在軸上,長軸長為,離心率為,經(jīng)過其左焦點的直線交橢圓、兩點(I)求橢圓的方程;
(II)在軸上是否存在一點,使得恒為常數(shù)?若存在,求出點的坐標(biāo)和這個常數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的方程為,雙曲線的左、右焦
點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.
(1)求雙曲線的方程;                                             
(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點,直線:,點在直線上移動,是線段軸的交點,
(I)求動點的軌跡的方程;
(II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當(dāng)運動時弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左、右焦點分別為,點在雙曲線的右支上,直線為過且切于雙曲線的直線,且平分,過作與直線平行的直線交點,則,利用類比推理:若橢圓的左、右焦點分別為,點在橢圓上,直線為過且切于橢圓的直線,且平分的外角,過作與直線平行的直線交點,則的值為 (     )  
A.B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖6,在平面直角坐標(biāo)系中,設(shè)點,直線:,點在直線上移動,
是線段軸的交點, .

(I)求動點的軌跡的方程;
(II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當(dāng)運動時弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖邊長為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現(xiàn)需在其余部分設(shè)計一個矩形草坪PNCQ,其中P是水池邊上任意一點,點N、Q分別在邊BC和CD上,設(shè)∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點P到邊BC和AB距離之比的最小值.

查看答案和解析>>

同步練習(xí)冊答案