分析 設(shè)f(x)=x2-kx+k+$\frac{1}{4}$,根據(jù)根與系數(shù)之間的關(guān)系建立條件關(guān)系即可.
解答 解:設(shè)f(x)=x2-kx+k+$\frac{1}{4}$,
∵方程x2-kx+k+$\frac{1}{4}$=0的實根的絕對值都小于1,
∴判別式△=k2-4(k+$\frac{1}{4}$)=k2-4k-1≥0,
解得k≥2+$\sqrt{5}$或k≤2-$\sqrt{5}$.
∴方程的兩個根滿足-1<x1<1,-1<x2<1,
則滿足$\left\{\begin{array}{l}{f(1)>0}\\{f(-1)>0}\\{-1<-\frac{-k}{2}<1}\end{array}\right.$,
即$\left\{\begin{array}{l}{1-k+k+\frac{1}{4}>0}\\{1+k+k+\frac{1}{4}>0}\\{-2<k<2}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{5}{4}>0}\\{k>-\frac{5}{8}}\\{-2<k<2}\end{array}\right.$,
即-$\frac{5}{8}$<k<2,
∵k≥2+$\sqrt{5}$或k≤2-$\sqrt{5}$.
∴-$\frac{5}{8}$<k≤2-$\sqrt{5}$.
故答案為:-$\frac{5}{8}$<k≤2-$\sqrt{5}$
點評 本題主要考查一元二次方程根與系數(shù)之間的關(guān)系,將方程轉(zhuǎn)化為函數(shù),利用一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com