對任意x1∈R,存在x2∈[1,2],使不等式x12+x1x2+x22≥2x1+mx2+3成立,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:運(yùn)用配方和二次函數(shù)的最值,可得0≥mx2+3-x22+
(x2-2)2
4
,再由參數(shù)分離,可得4m-4≤3x2-
16
x2
在[1,2]有解,求出右邊的最大值,解不等式即可得到m的范圍.
解答: 解:由于x12+x1x2+x22≥2x1+mx2+3
即為x12+x1(x2-2)+
(x2-2)2
4
=(x1+
x2-2
2
2
≥mx2+3-x22+
(x2-2)2
4
,
由于任意x1∈R,存在x2∈[1,2],使不等式x12+x1x2+x22≥2x1+mx2+3成立,
則有(4m-4)x2≤3x22-16,即有4m-4≤3x2-
16
x2
在[1,2]有解,
則4m-4≤3×2-8,解得m≤
1
2

則有m的取值范圍是(-∞,
1
2
].
點(diǎn)評(píng):本題考查函數(shù)的恒成立和有解的求法,考查函數(shù)的最值的求法,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是R上的減函數(shù),且f(x1)>f(x2),則x1與x2的大小關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O為的方程為x2+y2=2,圓M的方程為(x-1)2+(y-3)2=1,過圓M上任意一點(diǎn)P作圓O的切線PA,若直線PA與圓M的另一個(gè)交點(diǎn)為Q,則當(dāng)|PQ|的長度最大時(shí),直線PA的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2(x+
π
2
)
的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)k進(jìn)制數(shù)132與十進(jìn)制數(shù)30相等,那么k等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1-2sin2x是(  )
A、最小正周期為2π的奇函數(shù)
B、最小正周期為2π的偶函數(shù)
C、最小正周期為π的奇函數(shù)
D、最小正周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列式子簡化
1-sin6α-cos6α
1-cos4α-sin4α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司近年來科研費(fèi)用支出x萬元與公司所獲得利潤y萬元之間有如下的統(tǒng)計(jì)數(shù)據(jù):
x2345
y18273235
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a

(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測該公司科研費(fèi)用支出為10萬元時(shí)公司所獲得的利潤.
參考數(shù)據(jù):2×18+3×27+4×32+5×35=420.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為扶持大學(xué)生自主創(chuàng)業(yè),市政府提供了80萬元的無息貸款,用于某大學(xué)生開辦公司,生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司的經(jīng)營利潤逐步償還無息貸款,一盒子該產(chǎn)品的生產(chǎn)成本為每件40元;員工每人每月工資是2500元,公司每月支出其它費(fèi)用15萬元,該產(chǎn)品每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式如圖所示.
(1)求月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為50元時(shí),為保證公司月利潤達(dá)到5萬元,該公司應(yīng)安排員工多少人?
(3)若該公司有80名員工,則該公司最早可在幾個(gè)月內(nèi)還清無息貸款?

查看答案和解析>>

同步練習(xí)冊答案