9.已知等差數(shù)列{an}的前n項和為sn,若a2=4,a5=7,則$s_{10}^{\;}$=( 。
A.12B.60C.75D.120

分析 利用等差數(shù)列的通項公式與求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a2=4,a5=7,
∴$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{{a}_{1}+4d=7}\end{array}\right.$,解得a1=3,d=1.
則$s_{10}^{\;}$=$3×10+\frac{10×9}{2}×1$=75.
故選:C.

點評 本題考查了等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足(2b-c)cosA=acosC.
(1)求角A;
(2)若$a=\sqrt{13}$,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知${(1-2x)^7}={a_o}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}}$,那么a1+a2+…+a7等于-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC中,$∠A=\frac{π}{3}$,O為平面內(nèi)一點,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|$,M為劣弧$\widehat{BC}$上一動點,且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$,
則p+q的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.不等式$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.(k>1)$所表示的平面區(qū)域的面積為S,則$\frac{kS}{k-1}$的最小值為( 。
A.30B.32C.34D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{{1-\sqrt{2}sin(2x-\frac{π}{4})}}{cosx}$.
(Ⅰ)求f(x)的定義域;
(Ⅱ)設(shè)α是第四象限的角,且$sinα=-\frac{12}{13}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線l:y=2x+1與圓C:x2+y2=1交于兩點A,B,不在圓上的一點M(-1,m),若$\overrightarrow{MA}$$•\overrightarrow{MB}=1$,則m的值為( 。
A.-1,$\frac{7}{5}$B.1,$\frac{7}{5}$C.1,-$\frac{7}{5}$D.-1,$-\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知數(shù)列{an}滿足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$(k∈N*,k≥2,且q、d為常數(shù)),若{an}為等比數(shù)列,且首項為a(a≠0),則{an}的通項公式為an=a或${a_n}={({-1})^{n-1}}a$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知曲線$y=\frac{4}{x}(x>0)$的一條切線斜率為-1,則切點的橫坐標為2.

查看答案和解析>>

同步練習冊答案