6.對(duì)自行車運(yùn)動(dòng)員甲、乙二人在相同的條件下進(jìn)行了6次測(cè)試,測(cè)得他們的速度(單位:m/s)的數(shù)據(jù)如下:
甲:127  138  130  137  135  131       乙:133  129  138  134  128  136
(1)用莖葉圖表示甲,乙兩個(gè)人的成績(jī);
(2)分別計(jì)算兩個(gè)樣本的平均數(shù)$\overline{x}$和方差,并根據(jù)計(jì)算結(jié)果估計(jì)哪位運(yùn)動(dòng)員的成績(jī)比較穩(wěn)定.
參考公式:s=$\sqrt{\frac{1}{n}[({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$.

分析 (1)以百位數(shù)和十位數(shù)為莖,以個(gè)位數(shù)為葉,能作出莖葉圖表示甲,乙兩個(gè)人的成績(jī).
(2)分別求出甲、乙兩個(gè)樣本的平均數(shù)$\overline{x}$和方差,根據(jù)計(jì)算結(jié)果能估計(jì)哪位運(yùn)動(dòng)員的成績(jī)比較穩(wěn)定.

解答 解:(1)以百位數(shù)和十位數(shù)為莖,以個(gè)位數(shù)為葉,作出莖葉圖表示甲,乙兩個(gè)人的成績(jī):

(2)甲的平均數(shù)$\overline{{x}_{甲}}$=$\frac{127+138+130+137+135+131}{6}$=133,
乙的平均數(shù)是$\overline{{x}_{乙}}$=$\frac{133+129+138+134+128+136}{6}$=133,
甲的方差S2=$\frac{1}{6}$[(127-133)2+(138-133)2+(130-133)2+(137-133)2+(135-133)2+(131-133)2]=15.67,
甲的標(biāo)準(zhǔn)差s=3.96,
乙的方差S2=$\frac{1}{6}$[(133-133)2+(129-133)2+(138-133)2+(134-133)2+(128-133)2+(136-133)2]=12.67;
乙的標(biāo)準(zhǔn)差s=3.56,
甲和乙的平均成績(jī)相等,但是甲的標(biāo)準(zhǔn)差大,所以乙的成績(jī)比甲的成績(jī)穩(wěn)定.

點(diǎn)評(píng) 本題考查莖葉圖的作法,考查樣本平均數(shù)和標(biāo)準(zhǔn)差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意標(biāo)準(zhǔn)差公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知二次不等式x2-12x+9<0的解集為(α,β),則$\frac{{α}^{\frac{3}{2}}-{β}^{\frac{3}{2}}}{α-β}$=$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.lg5-lg$\frac{1}{2}$-lg25-2lg2=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營(yíng)養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購(gòu)牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:

(1)本次被調(diào)查的學(xué)生有200名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖2中所占圓心角的度數(shù)
(3)該校共有1200名學(xué)生訂購(gòu)了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購(gòu)牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下是程序框圖的基本邏輯結(jié)構(gòu),順序正確的是( 。
A.(1)是順序結(jié)構(gòu)(2)是條件結(jié)構(gòu)(3)是當(dāng)型循環(huán)結(jié)構(gòu)(4)是直到型循環(huán)結(jié)構(gòu)
B.(1)是條件結(jié)構(gòu)(2)是順序結(jié)構(gòu)(3)是當(dāng)型循環(huán)結(jié)構(gòu)(4)是直到型循環(huán)結(jié)構(gòu)
C.(1)是順序結(jié)構(gòu)(2)是條件結(jié)構(gòu)(3)是直到型循環(huán)結(jié)構(gòu)(4)是當(dāng)型循環(huán)結(jié)構(gòu)
D.(1)是順序結(jié)構(gòu)(2)是當(dāng)型循環(huán)結(jié)構(gòu)(3)是條件結(jié)構(gòu)(4)是直到型循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在三棱柱ABC-A1B1C1中側(cè)棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的體積為3,則三棱柱ABC-A1B1C1的外接球的表面積為( 。
A.16πB.$2\sqrt{3}$C.πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知各項(xiàng)為正的等比數(shù)列{an}中,a3=8,Sn為前n項(xiàng)和,S3=14.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若a1,a2分別為等差數(shù)列{bn}的第1項(xiàng)和第2項(xiàng),求數(shù)列{bn}的通項(xiàng)公式及{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在廣雅中學(xué)“十佳學(xué)生”評(píng)選的演講比賽中,如圖是七位評(píng)委為某學(xué)生打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的眾數(shù)和中位數(shù)分別為( 。
A.85,85B.84,86C.84,85D.85,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ax+3-4a,x<1}\\{{x}^{2}-ax,x≥1}\end{array}\right.$.
(Ⅰ)若a=3,則m取何值時(shí)y=f(x)的圖象與直線y=m有唯一的公共點(diǎn)?
(Ⅱ)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案