分析 設(shè)|PF1|=t,則|PQ|=t,|F1Q|=$\sqrt{2}$t,根據(jù)橢圓定義可知|PF1|+|PF2|=|QF1|+|QF2|=2a,進而得|PF1|+|PQ|+|F1Q|=4a,求得|PF2|關(guān)于t的表達式,進而利用韋達定理可知[(4-2$\sqrt{2}$)a]2+[(2$\sqrt{2}$-2)a]2=(2c)2求得a和c的關(guān)系.
解答 解:設(shè)|PF1|=t,則|PQ|=t,|F1Q|=$\sqrt{2}$t,由橢圓定義有:|PF1|+|PF2|=|QF1|+|QF2|=2a
∴|PF1|+|PQ|+|F1Q|=4a,
化簡得($\sqrt{2}$+2)t=4a,t=(4-2$\sqrt{2}$)a
∴|PF2|=2a-t=(2$\sqrt{2}$-2)a
在Rt△PF1F2中,|F1F2|2=(2c)2
∴[(4-2$\sqrt{2}$)a]2+[(2$\sqrt{2}$-2)a]2=(2c)2
∴($\frac{c}{a}$)2=9-6$\sqrt{2}$
∴e=$\sqrt{6}$-$\sqrt{3}$.
點評 本題主要考查了橢圓的簡單性質(zhì),考查了學(xué)生對橢圓定義的理解和運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有無數(shù)條 | B. | 有2條 | C. | 有1條 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{2}^{n}}$ | B. | 2n+$\frac{1}{{2}^{n-1}}$ | C. | 2n-2+$\frac{1}{{2}^{n-1}}$ | D. | $\frac{n-1}{{2}^{n-1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{x}$ | B. | x | C. | $\frac{x-1}{x+1}$ | D. | $\frac{1+x}{1-x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com