1.設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2,b]上的最大值為2,則2a+b=$\frac{2}{e}$+e.

分析 由題意可知0<a<1<b,以及ab=1,再f(x)在區(qū)間[a2,b]上的最大值為2可得出f(a2)=2求出a,故可得2a+b的值.

解答 解:由對數(shù)函數(shù)的性質(zhì)知
∵f(x)=|lnx|正實(shí)數(shù)a、b滿足a<b,且f(a)=f(b),
∴0<a<1<b,以及ab=1,
又函數(shù)在區(qū)間[a2,b]上的最大值為2,由于f(a)=f(b),f(a2)=2f(a)
故可得f(a2)=2,即|lna2|=2,即lna2=-2,即a2=$\frac{1}{{e}^{2}}$,可得a=$\frac{1}{e}$,b=e
則2a+b=$\frac{2}{e}$+e,
故答案為:$\frac{2}{e}$+e.

點(diǎn)評 本題考查對數(shù)函數(shù)的值域與最值,求解本題的關(guān)鍵是根據(jù)對數(shù)函數(shù)的性質(zhì)判斷出0<a<1<b,以及ab=1及f(x)在區(qū)間[a2,b]上的最大值的位置.根據(jù)題設(shè)條件靈活判斷對解題很重要.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.化簡sin($\frac{π}{2}$+α),$\frac{π}{2}$<α<π的結(jié)果是( 。
A.sinαB.-cosαC.cosαD.-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC=$\frac{2π}{3}$.管理部門欲在該地從M到D修建小路:在$\widehat{MN}$上選一點(diǎn)P(異于M、N兩點(diǎn)),過點(diǎn)P修建與BC平行的小路PQ.
(1)若∠PBC=$\frac{π}{3}$,求PQ的長度;
(2)當(dāng)點(diǎn)P選擇在何處時(shí),才能使得修建的小路$\widehat{MP}$與PQ及QD的總長最小?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求圓心在直線y=2x上,并且經(jīng)過點(diǎn)A(0,-2),與直線x-y-2=0相切的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=x2+3ax+4,b-3≤x≤2b是偶函數(shù),則a-b的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+2bx+5(b∈R).
(1)若b=2,試解不等式f(x)<10;
(2)若f(x)在區(qū)間[-4,-2]上的最小值為-11,試求b的值;
(3)若|f(x)-5|≤1在區(qū)間(0,1)上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),若f(x2-2)<f(2),則實(shí)數(shù)x的取值范圍(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x+x-1=4(x>0),則x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=( 。
A.2B.6C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l1:2x+y+1=0,直線l2:x+ay+3=0,若l1⊥l2,則實(shí)數(shù)a的值是( 。
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案