9.求圓心在直線y=2x上,并且經(jīng)過點(diǎn)A(0,-2),與直線x-y-2=0相切的圓的標(biāo)準(zhǔn)方程.

分析 根據(jù)條件確定圓心和半徑,即可求出圓的標(biāo)準(zhǔn)方程.

解答 解:因?yàn)閳A心在直線y=2x上,設(shè)圓心坐標(biāo)為(a,2a)
則圓的方程為(x-a)2+(y-2a)2=r2
圓經(jīng)過點(diǎn)A(0,-2)且和直線x-y-2=0相切,
所以有 $\left\{\begin{array}{l}{{a}^{2}+(2+2a)^{2}={r}^{2}}\\{\frac{|a-2a-2}{\sqrt{2}}=r}\end{array}\right.$…(6分)
解得:a=-$\frac{2}{3}$,r=$\frac{2\sqrt{2}}{3}$…(10分)
所以圓的方程為(x+$\frac{2}{3}$)2+(y+$\frac{4}{3}$)2=$\frac{8}{9}$…(12分)

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程的求解,根據(jù)條件確定圓心和半徑是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.△ABC中,角A,B,C的對邊分別為a,b,c,若滿足c=$\sqrt{2}$,a2+b2=c2+$\sqrt{2}$ab的△ABC有兩個(gè),則邊長BC的取值范圍是( 。
A.$(1,\sqrt{2})$B.$(1,\sqrt{3})$C.$(\sqrt{2},2)$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,有下列說法:
①若f(a)•f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點(diǎn);
②若f(a)•f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點(diǎn);
③若f(a)•f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點(diǎn);
④若f(a)•f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個(gè)零點(diǎn);
其中正確說法的序號(hào)是②④(把所有正確說法的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)點(diǎn)M(2,1,3)是直角坐標(biāo)系O-xyz中一點(diǎn),則點(diǎn)M關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為( 。
A.(2,-1,-3)B.(-2,1,-3)C.(-2,-1,3)D.(-2,-1,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點(diǎn)(3,1)關(guān)于直線y=x對稱的點(diǎn)的坐標(biāo)是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式2x+2>8的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2,b]上的最大值為2,則2a+b=$\frac{2}{e}$+e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)在R上是奇函數(shù),且f(x+4)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(7)=(  )
A.18B.2C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法中正確的個(gè)數(shù)是( 。
①若兩個(gè)平面α∥β,a?α,b?β,則a∥b;
②若兩個(gè)平面α∥β,a?α,b?β,則a與b異面;
③若兩個(gè)平面α∥β,a?α,b?β,則a與b一定不相交;
④若兩個(gè)平面α∥β,a?α,b?β,則a與b平行或異面.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案