【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上.這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象.過去50周的資料顯示,該地周光照量(小時)都在30以上.其中不足50的周數(shù)大約有5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周.根據(jù)統(tǒng)計某種改良黃瓜每個蔬菜大棚增加量(百斤)與每個蔬菜大棚使用農(nóng)夫1號液體肥料(千克)之間對應數(shù)據(jù)為如圖所示的折線圖:
(Ⅰ)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大棚增加量是多少斤?
(Ⅱ)因蔬菜大棚對光照要求較大,某光照控制儀商家為應對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運行,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關系:
周光照量(單位:小時) | |||
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為5000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損800元,欲使商家周總利潤的均值達到最大,應安裝光照控制儀多少臺?
附:回歸方程系數(shù)公式: .
【答案】(1) ;(2).
【解析】試題分析:(Ⅰ)算出樣本中心點的坐標,利用公式求得,由可得,即可得回歸方程,再將時代入即可得結(jié)果;(Ⅱ)分別求出安裝2臺光照控制儀的周利潤的均值、安裝3臺光照控制儀的均值,與安裝1臺光照控制儀可獲得周利潤進行比較即可得結(jié)果.
試題解析:(Ⅰ) , ,
, ,
所以關于的線性回歸方程為,
當時, 百斤=550斤,
所以估計如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大棚增加量是500斤.
(Ⅱ)記商家總利潤為元,由已知條件可知至少需安裝1臺,
①安裝1臺光照控制儀可獲得周利潤5000元,
②安裝2臺光照控制儀的情形:
當時,一臺光照控制儀運行,此時元,
當時,兩臺光照控制儀都運行,此時元,
故的分布列為
4200 | 10000 | |
0.2 | 0.8 |
所以元,
③安裝3臺光照控制儀的情形:
當時,一臺光照控制儀運行,此時元,
當時,兩臺光照控制儀運行,此時元,
當時,三臺光照控制儀都運行,此時元,
故的分布列為
3400 | 9200 | 15000 | |
0.2 | 0.7 | 0.1 |
所以元,
綜上,為使商家周總利潤的均值達到最大應該安裝2臺光照控制儀.
【方法點晴】本題主要考查線性回歸方程及離散型隨機變量的分布列與數(shù)學期望,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;(2) 回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+a
(1)當 時,求不等式f(x)>1的解集;
(2)若對于任意x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計劃在此基礎上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設x,y分別表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學關系式,并畫出相應的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤為3萬元;生產(chǎn)1車皮乙種肥料,利潤為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】各棱長都等于4的四面ABCD中,設G為BC的中點,E為△ACD內(nèi)的動點(含邊界),且GE∥平面ABD,若 =1,則| |= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有兩個不同的解,求實數(shù)a的范圍.
(II)當|f(0)|≤2,|f(1)|≤2時,求|f(x)|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行抽獎活動,從裝有編號0,1,2,3四個小球的抽獎箱中,每次取出后放回,連續(xù)取兩次,取出的兩個小球號碼相加之和等于5中一等獎,等于4中二等獎,等于3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com