【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

【答案】
【解析】解:連接CE,并延長交AD于F,連接BF,
由EG∥平面ABD,EG平面BCF,平面BCF∩平面ABD=BF,
可得EG∥BF,由G為BC的中點(diǎn),可得E為CF的中點(diǎn),
設(shè)AF=t,則 = + )= + ),
在四面體ABCD中, = = =4×4× =8,
= + )(
= + 2
= (8﹣8+ 16﹣ 8)=1,
解得t=1,即 = + ),
可得| |2= 2+ 2+
= ×(16+ ×16+ ×8)= ,
可得| |=
所以答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x2+y2﹣4x﹣2y﹣k=0表示圖形為圓.
(1)若已知曲線關(guān)于直線x+y﹣4=0的對(duì)稱圓與直線6x+8y﹣59=0相切,求實(shí)數(shù)k的值;
(2)若k=15,求過該曲線與直線x﹣2y+5=0的交點(diǎn),且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC=2,原點(diǎn)O是BC的中點(diǎn),點(diǎn)A的坐標(biāo)為 ( ,0),點(diǎn)D在平面yOz上,且∠BDC=90°,∠DCB=30°.

(1)求向量 的坐標(biāo)
(2)求向量 的夾角的余弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,設(shè)F(x)=x2f(x),則F(x)是(
A.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞減
B.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞增
C.偶函數(shù),在(﹣∞,0)上遞減,在(0,+∞)上遞增
D.偶函數(shù),在(﹣∞,0)上遞增,在(0,+∞)上遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地4個(gè)蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上.這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對(duì)象.過去50周的資料顯示,該地周光照量(小時(shí))都在30以上.其中不足50的周數(shù)大約有5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周.根據(jù)統(tǒng)計(jì)某種改良黃瓜每個(gè)蔬菜大棚增加量(百斤)與每個(gè)蔬菜大棚使用農(nóng)夫1號(hào)液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖:

(Ⅰ)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)蔬菜大棚使用農(nóng)夫1號(hào)肥料10千克,則這種改良黃瓜每個(gè)蔬菜大棚增加量是多少斤?

(Ⅱ)因蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為應(yīng)對(duì)惡劣天氣對(duì)光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運(yùn)行,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀最多可運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤為5000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損800元,欲使商家周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺(tái)?

附:回歸方程系數(shù)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知 =
(1)求角C的大;
(2)若c=2,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列定積分:
(1) dx
(2) dx
(3)求如圖所示陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 共線,求邊長b和c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案