如圖13所示,在四棱柱ABCD A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是線段AB的中點(diǎn).
圖13
(1)求證:C1M∥平面A1ADD1;
(2)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(銳角)的余弦值.
解:(1)證明:因?yàn)樗倪呅?i>ABCD是等腰梯形,
且AB=2CD,所以AB∥DC,
又M是AB的中點(diǎn),
所以CD∥MA且CD=MA.
連接AD1.因?yàn)樵谒睦庵?i>ABCD A1B1C1D1中,
CD∥C1D1,CD=C1D1,
所以C1D1∥MA,C1D1=MA,
所以四邊形AMC1D1為平行四邊形,
因此,C1M∥D1A.
又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,
所以C1M∥平面A1ADD1.
(2)方法一:連接AC,MC.
由(1)知,CD∥AM且CD=AM,
所以四邊形AMCD為平行四邊形,
所以BC=AD=MC.
由題意∠ABC=∠DAB=60°,
所以△MBC為正三角形,
因此AB=2BC=2,CA=,
因此CA⊥CB.
設(shè)C為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系C xyz.
所以A(,0,0),B(0,1,0),D1(0,0,).
所以平面C1D1M和平面ABCD所成的角(銳角)的余弦值為.
方法二:由(1)知,平面D1C1M∩平面ABCD=AB,點(diǎn)過(guò)C向AB引垂線交AB于點(diǎn)N,連接D1N.
由CD1⊥平面ABCD,可得D1N⊥AB,
因此∠D1NC為二面角C1 AB C的平面角.
在Rt△BNC中,BC=1,∠NBC=60°,
可得CN=,
所以ND1==.
在Rt△D1CN中,cos∠D1NC===,
所以平面C1D1M和平面ABCD所成的角(銳角)的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
連續(xù)擲一枚均勻的正方體骰子(6個(gè)面分別標(biāo)有1,2,3,4,5,6).現(xiàn)定義數(shù)列{an}:當(dāng)向上面上的點(diǎn)數(shù)是3的倍數(shù)時(shí),an=1;當(dāng)向上面上的點(diǎn)數(shù)不是3的倍數(shù)時(shí),an=-1.設(shè)Sn是其前n項(xiàng)和,那么S5=3的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖15所示.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
圖15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖13所示,四棱錐PABCD中,底面是以O為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點(diǎn),且BM=,MP⊥AP.
(1)求PO的長(zhǎng);
(2)求二面角APMC的正弦值.
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖16,四棱錐P ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
圖16
(1)求證:AB⊥PD.
(2)若∠BPC=90°,PB=,PC=2,問(wèn)AB為何值時(shí),四棱錐P ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖14所示,在長(zhǎng)方體ABCD A1B1C1D1中,AB=11,AD=7,AA1=12.一質(zhì)點(diǎn)從頂點(diǎn)A射向點(diǎn)E(4,3,12),遇長(zhǎng)方體的面反射(反射服從光的反射原理),將第i-1次到第i次反射點(diǎn)之間的線段記為Li(i=2,3,4),L1=AE,將線段L1,L2,L3,L4豎直放置在同一水平線上,則大致的圖形是( )
圖14
A B
C D
圖15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知如圖G78所示的多面體中,四邊形ABCD是菱形,四邊形BDEF是矩形,ED⊥平面ABCD,∠BAD=.
(1)求證:平面BCF∥平面AED;
(2)若BF=BD=a,求四棱錐ABDEF的體積.
圖G78
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
高三(4)班有4個(gè)學(xué)習(xí)小組,從中抽出2個(gè)小組進(jìn)行作業(yè)檢查.在這個(gè)試驗(yàn)中,基本事件的個(gè)數(shù)為( )
A.2 B.4
C.6 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知平面上的線段l及點(diǎn)P,任取l上一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到線段l的距離,記作d(P,l)
①若點(diǎn)P(1,1),線段l:x﹣y﹣3=0(3≤x≤5),則d(P,l)=;
②設(shè)l是長(zhǎng)為2的定線段,則集合D={P|d(P,l)≤1}所表示的圖形面積為4;
③若A(1,3),B(1,0),C(﹣1,3),D(﹣1,0),線段l1:AB,l2:CD,則到線段l1,l2距離相等的點(diǎn)的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x=0};
④若A(﹣1,0),B(1,0),C(0,﹣1),D(0,1),線段l1:AB,l2:CD,則到線段l1,l2距離相等的點(diǎn)的集合D={P|d(P,l1)=d(P,l2)}={(x,y)|x2﹣y2=0}.
其中正確的有 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com