7.已知圓的方程為x2+y2-6x=0.則該圓的圓心和半徑分別是(  )
A.(0,0),r=3B.(3,0),r=3C.(-3,0),r=3D.(3,0)r=9

分析 化簡圓的一般方程為標(biāo)準(zhǔn)方程,即可求出圓的圓心與半徑.

解答 解:圓x2+y2-6x=0,即(x-3)2+y2=9,圓的圓心(3,0),半徑為3.
故選B.

點(diǎn)評 本題考查圓的一般方程的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)$a=\sqrt{5}-\sqrt{6},b=\sqrt{6}-\sqrt{7}$,則a,b的大小關(guān)系為a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.雙曲線x2-y2=2016的左、右頂點(diǎn)分別為A1、A2,P為其右支上一點(diǎn),且P不在x軸上,若∠A1PA2=4∠PA1A2,則∠PA1A2等于( 。
A.$\frac{π}{12}$B.$\frac{π}{36}$C.$\frac{π}{18}$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(x-k)ex
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=3時(shí),求f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=4cos?x•sin({?x+\frac{π}{4}})(?>0)$的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)討論f(x)在區(qū)間[0,$\frac{π}{2}$]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3+3|x-a|+2(a∈R).
(1)當(dāng)a=0時(shí),討論f(x)的單調(diào)性;
(2)求f(x)在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.求滿足${(\frac{1}{4})^{x-1}}$>16的x的取值集合是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列各組中的兩個(gè)集合M和N,表示同一集合的是( 。
A.M={3,6},N={(3,6)}B.M={π},N={3.1415926}
C.M={x|1<x<3,x∈R},N={2}D.$M=\left\{{1,\sqrt{5},π}\right\},N=\left\{{1,π,|{-\sqrt{5}}|}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題:?x∈R,則2x2+2x+$\frac{1}{2}$<0的否定是( 。
A.?x∈R,則2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,則2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,則2x02+2x0+$\frac{1}{2}$<0D.?x∈R,則2x2+2x+$\frac{1}{2}$>0

查看答案和解析>>

同步練習(xí)冊答案