設(shè)函數(shù)f(x)=D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x-2y在D上的最大值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十八第六章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
某公司一年購買某種貨物400噸,每次都購買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x=( )
(A)20 (B)10 (C)16 (D)8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:填空題
已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時(shí)求導(dǎo),得:
2yy'=2p,則y'=,所以過P的切線的斜率:k=.
試用上述方法求出雙曲線x2-=1在P(,)處的切線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:填空題
已知數(shù)列{an}中,a1=1,a2=2,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S5= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
已知數(shù)列{an}的通項(xiàng)公式是an=2n-3()n,則其前20項(xiàng)和為( )
(A)380-(1-)(B)400-(1-)
(C)420-(1-)(D)440-(1-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
若x,y滿足約束條件且目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為7,則+的最小值為( )
(A)14 (B)7 (C)18 (D)13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
若不等式Ax+By+5<0表示的平面區(qū)域不包括點(diǎn)(2,4),且k=A+2B,則k的取值范圍是( )
(A)k≥- (B)k≤-
(C)k>- (D)k<-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1=-10,a4+a6=-4,則當(dāng)Sn取最小值時(shí),n=( )
(A)5(B)6(C)11(D)5或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十八選修4-4第二節(jié)練習(xí)卷(解析版) 題型:解答題
在曲線C1:(θ為參數(shù),0≤θ<2π)上求一點(diǎn),使它到直線C2:(t為參數(shù))的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com