已知角α的頂點與直角坐標系的原點重合,始邊在x軸的正半軸上,終邊經(jīng)過點P(-1,2),求sinα與cos(π+α)的值.
分析:由題意可得 x=-1,y=2,r=
1+4
=
5
,故sinα=
y
r
,cos(π+α)=-cosα=-
x
r
,運算求得結(jié)果.
解答:解:由題意可得 x=-1,y=2,r=
1+4
=
5
,∴sinα=
y
r
=
2
5
=
2
5
5

cos(π+α)=-cosα=-
x
r
=-
-1
5
=
5
5
點評:本題考查任意角的三角函數(shù)的定義,兩點間的距離公式和誘導公式的應用,利用任意角的定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正△ABC的頂點A在平面α上,頂點B,C在平面α的同一側(cè),D為BC的中點,若△ABC在平面α上的射影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的范圍是( 。
A、[
6
3
,1)
B、[
6
3
3
2
)
C、[
1
2
,
3
2
)
D、(
1
2
,
6
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的頂點與直角坐標系的原點重合,始邊在x軸的正半軸上,終邊經(jīng)過點P(-1,2),
求(1)sinα,cosα,tanα
(2)
sin(α-5π)cos(-
π
2
-α)cos(8π-α)
sin(α-
2
)sin(-α-4π)tan(α+π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正△ABC的頂點A在平面α上,頂點B、C在平面α的同一側(cè),D為BC的中點,若△ABC在平面α上的投影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的范圍為
[
6
3
,
3
2
)
[
6
3
3
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的頂點與直角坐標系的原點重合,始邊在x軸的正半軸上,終邊經(jīng)過點P(-1,2),求sin(2α+
4
)+tan(2α-π)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的頂點與直角坐標系的原點重合,始邊在x的正半軸上,終邊在y=-2x且x≤0,求sin(2α+
3
)的值.

查看答案和解析>>

同步練習冊答案