已知中心在原點(diǎn)的橢圓C:的一個(gè)焦點(diǎn)為F1(0,3),M(x,4)(x>0)為橢圓C上一點(diǎn),△MOF1的面積為.
(1) 求橢圓C的方程;
(2) 是否存在平行于OM的直線l,使得直線l與橢圓C相交于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

(1) (2) 符合題意的直線存在,且所求的直線的方程為.

解析試題分析:(1) 求橢圓C的方程,根據(jù)橢圓的焦點(diǎn)為,可得橢圓的方程為,利用橢圓上一點(diǎn),利用的面積為,可求出的坐標(biāo),將的坐標(biāo)代入橢圓的方程,即可確定橢圓的方程;(2) 這是探索性命題,可假設(shè)存在符合題意的直線l存在,設(shè)直線方程代入橢圓方程,消去y,可得一元二次方程,利用韋達(dá)定理,結(jié)合以線段AB為直徑的圓恰好經(jīng)過(guò)原點(diǎn),得,利用即可求得結(jié)論.
試題解析:(1) 因?yàn)闄E圓C的一個(gè)焦點(diǎn)為F1(0,3),
所以b2=a2+9.
則橢圓C的方程為=1.
因?yàn)閤>0,所以×3×x=,解得x=1.
故點(diǎn)M的坐標(biāo)為(1,4).
因?yàn)镸(1,4)在橢圓上,
所以=1,得a4-8a2-9=0,解得a2=9或a2=-1(不合題意,舍去),
則b2=9+9=18,所以橢圓C的方程為.       6分
(2) 假設(shè)存在符合題意的直線l與橢圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),
其方程為y=4x+m(因?yàn)橹本OM的斜率k=4).
消去y化簡(jiǎn)得18x2+8mx+m2-18=0.
進(jìn)而得到x1+x2=-,x1x2.
因?yàn)橹本l與橢圓C相交于A,B兩點(diǎn),
所以Δ=(8m)2-4×18×(m2-18)>0,
化簡(jiǎn)得m2<162,解得-9<m<9.
因?yàn)橐跃段AB為直徑的圓恰好經(jīng)過(guò)原點(diǎn),所以=0,
所以x1x2+y1y2=0.
又y1y2=(4x1+m)(4x2+m)=16x1x2+4m(x1+x2)+m2,
x1x2+y1y2=17x1x2+4m(x1+x2)+m2+m2=0.
解得m=±.
由于±∈(-9,9),
所以符合題意的直線l存在,且所求的直線l的方程為y=4x+或y=4x-.    13分
考點(diǎn):直線與圓錐曲線的關(guān)系;橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C=1(a>b>0)的兩個(gè)焦點(diǎn)F1F2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2的斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知=λ=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點(diǎn)M在橢圓Γ:+y2=1上;
(2)若點(diǎn)N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓過(guò)點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過(guò)點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作直線交拋物線于,兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是軸的拋物線經(jīng)過(guò)點(diǎn)
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線過(guò)定點(diǎn),斜率為,當(dāng)為何值時(shí),直線與拋物線有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線Ey2=4x的焦點(diǎn)為F,準(zhǔn)線lx軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)MN.
 
(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案