14.函數(shù)f(x)=x3-$\frac{a}{2}$x2-2a2x+$\frac{3}{2}$的圖象經(jīng)過四個象限,則a的取值范圍是(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞).

分析 先求出函數(shù)的導數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性,結合函數(shù)圖象所在的象限,從而求出a的范圍.

解答 解:f′(x)=(3x+2a)(x-a),令f′(x)=0得:x=-$\frac{2a}{3}$,x=a,
當a<0時,f(x)在(-∞,a)和(-$\frac{2}{3}$a,+∞)上是增函數(shù),在(a,-$\frac{2}{3}$a)上是減函數(shù),
因為f(0)=$\frac{3}{2}$>0,所以f(x)必過一、二、三象限,故只要f(x)極小值小于0即可.
f(-$\frac{2}{3}$a)<0的解為:a<-$\frac{9\sqrt{11}}{22}$,
同理,當a>0時,f(a)<0得:a>1.
綜上,a的取值范圍是(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞),
故答案為:(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞).

點評 本題考察了函數(shù)的單調(diào)性,考察導數(shù)的應用,考察分類討論思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知拋物線C1:y2=2px(p>0)的焦點F與雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點重合,C1與C2相交于點 A,B.
(1)若A,F(xiàn),B三點共線,求雙曲線C2的離心率e;
(2)設點P為雙曲線C2上異于A,B的任一點,直線AP、BP分別與x軸交于點M(m,0)和N(n,0),問:mn是否為定值?若為定值,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某學校舉行知識競賽,第一輪選拔共設有A,B,C,D四個問題,規(guī)則如下:①每位參加者計分器的初始分均為10分,答對問題A,B,C,D分別加1分,2分,3分,6分,答錯任意題減2分;
②每答一題,計分器顯示累計分數(shù),當累積分數(shù)小于8分時,答題結束,淘汰出局;當累積分數(shù)大于或等于14分時,答題結束,進入下一輪;答完四題累計分數(shù)不足14分時,答題結束淘汰出局;
③每位參加者按A,B,C,D順序作答,直至答題結束.
假設甲同學對問題A,B,C,D回答正確的概率依次為$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.(Ⅰ)求甲同學能進入下一輪的概率;
(Ⅱ)用ξ表示甲同學本輪答題的個數(shù),求ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,側面APD為等腰直角
三角形,PA⊥PD,平面PAD⊥底面ABCD,E為側棱PC上不同于端點的一點.
(1)證明:PA⊥DE;
(2)試確定點E的位置,使二面角E-BD-C的余弦值為$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax2-2x-1(x∈R).
(1)當a=0時,求f(x)的單調(diào)區(qū)間;
(2)求證:對任意實數(shù)a<0,有f(x)>$\frac{{{a^2}-a+1}}{a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知各項均不相等的等差數(shù)列{an}的前五項和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設Tn為數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和,若存在n∈N*,使得Tn-λan+1≥0成立.求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.點M(x,y)在直線x+y-10=0上,且x,y滿足-5≤x-y≤5,則$\sqrt{{x}^{2}+{y}^{2}}$的取值范圍是( 。
A.[0,$\frac{5\sqrt{10}}{2}$]B.[0,5$\sqrt{2}$]C.[5$\sqrt{2}$,$\frac{5\sqrt{10}}{2}$]D.[5,$\frac{5\sqrt{10}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.我們把中間位數(shù)上的數(shù)字最大面兩邊依次減小的多位數(shù)成為“凸數(shù)”.如132、341等,那么由1、2、3、4、5可以組成無理重復數(shù)字的三位凸數(shù)的個數(shù)是20(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設a>0且a≠1.則“函數(shù)f(x)=logax是(0,+∞)上的增函數(shù)”是“函數(shù)g(x)=(1-a)•ax”是R上的減函數(shù)的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案