設,函數(shù),其中是自然對數(shù)的底數(shù)。
(1)判斷在R上的單調(diào)性;
(2)當時,求在上的最值。
(1)當時在R上是單調(diào)遞增函數(shù),當時在上是單調(diào)遞增函數(shù),在上是單調(diào)遞減函數(shù)(2),
解析試題分析:(1)對求導,得
1分
設
當時,
即在R上是單調(diào)遞增函數(shù) 3分
當時,的兩根分別為
且
當時,
即
當時,
即
在上是單調(diào)遞增函數(shù);
在上是單調(diào)遞減函數(shù) 6分
(2)當時,
時,是單調(diào)遞增函數(shù) 10分
故時,
12分
考點:函數(shù)單調(diào)性與最值
點評:當函數(shù)解析式中有參數(shù)時要對參數(shù)分情況討論確定其單調(diào)性,函數(shù)在閉區(qū)間上的最值出在閉區(qū)間的端點或極值點處
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對都有成立,求實數(shù)的取值范圍;
(Ⅲ)證明:(且).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當0≤x≤1時,f(x)=x.
(1)求f(π)的值;
(2)當-4≤x≤4時,求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其中為常數(shù).
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)當時,求的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數(shù),不等式都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,函數(shù)的圖像在點處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設斜率為的直線與函數(shù)的圖象交于兩點,()
證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是.
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為
直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com