已知函數(shù)y=ax2+2x+1,當(dāng)x∈[1,2],總有y∈[1,4]則a的取值范圍為
 
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)已知條件便有1≤ax2+2x+1≤4在x∈[1,2]上恒成立,從而a≤
-2x+3
x2
,且a≥
-2
x
恒成立,所以通過(guò)求導(dǎo),判斷出函數(shù)
-2x+3
x2
-2
x
在[1,2]上的單調(diào)性,根據(jù)單調(diào)性分別求這兩個(gè)函數(shù)的最小值,最大值即可得出a的取值范圍.
解答: 解::∵y∈[1,4]
∴1≤ax2+2x+1≤4
 從而得到a≤
-2x+3
x2
,且a≥
-2
x
對(duì)于任意x∈[1,2]恒成立;
設(shè)f(x)=
-2x+3
x2
,g(x)=
-2
x

f′(x)=
-2(x2-2x+3)
x3
=
-2(x-1)2-4
x3
<0,g′(x)=
2
x2
>0
;
∴f(x)在[1,2]上是減函數(shù),f(x)在[1,2]上的最小值為f(2)=-
1
4
;
g(x)在[1,2]上是增函數(shù),g(x)的最大值為g(2)=-1;
a≤-
1
4
,且a≥-1

∴a的取值范圍為[-1,-
1
4
]

故答案為:[-1,-
1
4
].
點(diǎn)評(píng):考查函數(shù)定義、值域的概念,以及根據(jù)函數(shù)導(dǎo)數(shù)符號(hào)判斷函數(shù)的單調(diào)性的方法,根據(jù)函數(shù)的單調(diào)性求函數(shù)的最值的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)M與曲線Ci上任意一點(diǎn)距離的最小值為di(i=1,2),若d1<d2,則稱(chēng)C1比C2更靠近點(diǎn)M,下列為假命題的是(  )
A、C1:x=0比C2:y=0更靠近M(1,-2)
B、C1:y=ex比C2:xy=1更靠近M(0,0)
C、若C1:(x-2)2+y2=1比C2:x2+(y-2)2=1更靠近點(diǎn)M(m,2m),則m>0
D、若m>1,則C1:y2=4x比C2:x-y+m=0更靠近點(diǎn)M(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x、y滿足
2
x
+
1
y
=1,則x+2y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如右表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5~7分鐘,乙每次解答一道幾何題所用的時(shí)間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為 X,求 X的分布列及數(shù)學(xué)期望 EX.
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若 a>0,b>0,且
1
a
+
1
b
=
ab
,求a3+b3的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線方程為3x+4y+k=0,圓的方程為x2+y2-6x+5=0.
(1)若直線過(guò)圓心,則k=
 

(2)若直線和圓相切,則k=
 

(3)若直線和圓相交,則k的取值范圍為:
 

(4)若直線和圓相離,則k的取值范圍為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線性變化T把點(diǎn)(1,-1)變成了(1,0),把點(diǎn)(1,1)變成了點(diǎn)(0,1).
(1)求變換T所對(duì)應(yīng)的矩陣M;
(2)求直線y=-1在變換T的作用下得到直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的方程為
x2
m
+
y2
2m-1
=1
,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,已知a=5
2
,c=10,A=30°,則角B等于( 。
A、105°B、60°
C、15°D、105°或15°

查看答案和解析>>

同步練習(xí)冊(cè)答案