現(xiàn)有四個函數(shù):①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的圖象(部分)如下:

則按照從左到右圖象對應的函數(shù)序號安排正確的一組是( 。
A、①④③②B、③④②①
C、④①②③D、①④②③
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應用
分析:從左到右依次分析四個圖象可知,第一個圖象關于Y軸對稱,是一個偶函數(shù),第二個圖象不關于原點對稱,也不關于Y軸對稱,是一個非奇非偶函數(shù);第三、四個圖象關于原點對稱,是奇函數(shù),但第四個圖象在Y軸左側(cè),圖象都在x軸的下方,再結(jié)合函數(shù)的解析式,進而得到答案.
解答: 解:分析函數(shù)的解析式,可得:
①y=x•sinx為偶函數(shù);
②y=x•cosx為奇函數(shù);
③y=x•|cosx|為奇函數(shù),
④y=x•2x為非奇非偶函數(shù)
且當x<0時,③y=x•|cosx|≤0恒成立;
則從左到右圖象對應的函數(shù)序號應為:①④②③
故選:D.
點評:本題考點是考查了函數(shù)圖象及函數(shù)圖象變化的特點,解決此類問題有借助兩個方面的知識進行研究,一是函數(shù)的性質(zhì),二是函數(shù)圖象要過的特殊點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)g(x)=
1-x
+
1
x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=elnx,g(x)=
1
e
f(x)-(x+1)(e為自然對數(shù)).
(1)求函數(shù)g(x)的最大值;
(2)求證:e 1+
1
2
+
1
3
+…
1
n
>n+1(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:log327×92

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1

(Ⅰ)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(Ⅱ)確定a的值,使f(x)為奇函數(shù),并說明理由;
(Ⅲ)當f(x)為奇函數(shù)時,若
1
1
2
-f(x)
<4x+a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x2+a3x (ai∈R,i=0,1,2,3),當x=-
2
2
時,f (x)取得極大值
2
3
,并且函數(shù)y=f′(x)的圖象關于y軸對稱.
(1)求f (x)的表達式;
(2)試在函數(shù)f (x)的圖象上求兩點,使以這兩點為切點的切線互相垂直,且切點的橫坐標都在區(qū)間[-1,1]上;
(3)求證:|f(sinx)-f(cosx)|≤
2
2
3
(x∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-
1
x2
+4
(x>0).
(1)a1=1,
1
an+1
=-f(an),n∈N*,求{an}的通項;
(2)設Sn=a12+a22+…+an2,bn=S2n+1-Sn,是否存在整數(shù)m,對一切n∈N*,都有bn
m
25
成立?若存在,求出m的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐S-ABC中,SA=AB=AC=2,∠ASB=∠BSC=∠CSA=30°,M,N分別為SB,SC上的點,則△AMN周長最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S10=S15,求當n為何值時,Sn取得最大值,并求出它的最大值.

查看答案和解析>>

同步練習冊答案