【題目】如圖,在三棱柱中, 平面, , 在線段上, , .
(1)求證: ;
(2)試探究:在上是否存在點(diǎn),滿足平面,若存在,請(qǐng)指出點(diǎn)的位置,并給出證明;若不存在,說明理由.
【答案】(1)證明見解析;(2)答案見解析.
【解析】試題分析:(1)因?yàn)?/span>面,所以,結(jié)合就有面,從而.(2)取,在平面內(nèi)過作交于,連結(jié).可以證明四邊形為平行四邊形,從而,也就是平面.我們還可以在平面內(nèi)過作,交于,連結(jié).通過證明平面平面得到平面.
解析:(1)∵面, 面,∴.又∵, , 面, ,∴面,又面,∴.
(2)(法一)當(dāng)時(shí), 平面.
理由如下:在平面內(nèi)過作交于,連結(jié).∵,∴,又,且,∴且,∴四邊形為平行四邊形,∴,又面, 面,∴平面.
(法二)當(dāng)時(shí), 平面.理由如下:在平面內(nèi)過作,交于,連結(jié).∵, 面, 面,
∴平面,∵,∴,∴,又面, 面,∴平面.又面, 面, ,∴平面平面.∵面,∴平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷售單價(jià)與日均銷售量的關(guān)系如圖所示.
銷售單價(jià)/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均銷售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營部怎樣定價(jià)才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解適齡公務(wù)員對(duì)開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位三十歲到四十歲的公務(wù)員,得到如下列聯(lián)表,因不慎丟失部分?jǐn)?shù)據(jù).
(1)完成表格數(shù)據(jù),判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”并說明理由;
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來參加座談,設(shè)邀請(qǐng)的2人中來自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
男性公務(wù)員 | 女性公務(wù)員 | 總計(jì) | |
有意愿生二胎 | 15 | 45 | |
無意愿生二胎 | 25 | ||
總計(jì) |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 方程有實(shí)根函數(shù)有零點(diǎn)
B. 有兩個(gè)不同的實(shí)根
C. 函數(shù)在上滿足,則在內(nèi)有零點(diǎn)
D. 單調(diào)函數(shù)若有零點(diǎn),至多有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高二年級(jí)期末考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據(jù)相關(guān)信息回答下列問題:
(1)求a,b的值,并畫出頻率分布直方圖;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)在[60,80)內(nèi)學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人的分?jǐn)?shù)在[70,80)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品的市場(chǎng)需求量(萬件)、市場(chǎng)供應(yīng)量(萬件)與市場(chǎng)價(jià)格(元/件)分別近似地滿足下列關(guān)系: , .當(dāng)時(shí)的市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格,此時(shí)的需求量稱為平衡需求量.
(1)求平衡價(jià)格和平衡需求量;
(2)若該商品的市場(chǎng)銷售量(萬件)是市場(chǎng)需求量和市場(chǎng)供應(yīng)量兩者中的較小者,該商品的市場(chǎng)銷售額(萬元)等于市場(chǎng)銷售量與市場(chǎng)價(jià)格的乘積.
①當(dāng)市場(chǎng)價(jià)格取何值時(shí),市場(chǎng)銷售額取得最大值;
②當(dāng)市場(chǎng)銷售額取得最大值時(shí),為了使得此時(shí)的市場(chǎng)價(jià)格恰好是新的市場(chǎng)平衡價(jià)格,則政府應(yīng)該對(duì)每件商品征稅多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)P(﹣3 ,4),它的漸近線方程為y=± x.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F1和F2為該雙曲線的左、右焦點(diǎn),點(diǎn)P在此雙曲線上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com