直線x=0,y=0,x=2與曲線y=
4-x2
所圍成的圖形繞x軸旋轉(zhuǎn)一周而成的旋轉(zhuǎn)體的體積等于
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:根據(jù)題意,在平面直角坐標(biāo)系內(nèi)作出圖形,可得直線x=0、y=0、x=2與曲線y=
4-x2
所圍成的圖形是以原點(diǎn)為圓心、半徑為2的圓的
1
4
.由此可得旋轉(zhuǎn)成的幾何體是一個(gè)半球,利用球的體積公式加以計(jì)算,可得答案.
解答: 解:根據(jù)題意,可得直線x=0,y=0,x=2與曲線y=
4-x2
所圍成的圖形,
是以原點(diǎn)為圓心、半徑為2的圓的
1
4
,
因此,該圖形繞x軸旋轉(zhuǎn)一周而成的幾何體是一個(gè)半球,
可得體積為V=
1
2
×
4
3
π×23
=
16
3
π.
故答案為:
16
3
π
點(diǎn)評(píng):本題給出幾條曲線轉(zhuǎn)成的幾何圖形,求該圖形繞x軸旋轉(zhuǎn)一周而成的幾何體的體積.著重考查了圓的方程、旋轉(zhuǎn)體的定義與性質(zhì)、球的體積公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列數(shù)列是等比數(shù)列的是( 。
A、1,1,1,1,1
B、0,0,0,…
C、0,
1
2
,
1
4
,
1
8
,…
D、-1,-1,1,-1,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)《中國(guó)新聞網(wǎng)》10月21日?qǐng)?bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間“英語(yǔ)考試該如何改”引起廣泛關(guān)注.為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語(yǔ)聽(tīng)力”的問(wèn)題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
態(tài)度
調(diào)查人群
應(yīng)該取消 應(yīng)該保留 無(wú)所謂
在校學(xué)生 2100人 120人 y人
社會(huì)人士 600人 x人 z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
9
-
y2
16
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上.若PF1⊥PF2,求點(diǎn)P到x軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑為5,圓心角為216°的扇形,在這個(gè)圓錐中內(nèi)接一個(gè)高為2的圓柱.
(1)求圓錐的體積;
(2)求圓錐與圓柱的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式|x-m|+|x-1|≥2m+3的解集是R,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,則下列命題正確的是
 
(寫(xiě)出所有正確命題的序號(hào)).
①若ab>c2,則C<
π
3

②若a+b>2c,則C<
π
3

③若a4+b4=c4,則C<
π
2

④若(a+b)c<2ab,則C>
π
2
;
⑤若(a2+b2)c2<2a2b2,則C>
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2-4x-4y-10=0上的點(diǎn)到直線x+y-14=0的最大距離與最小距離的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={2,3,4},若集合A={2,3},則∁UA=( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案