在長方體ABCD-A1B1C1D1 中,B1C和C1D 與底面所成角分別為30°和45°,AA1=1,則A1到截面AB1D1的距離為( 。
A、
8
3
B、
4
3
C、
7
7
D、
21
7
考點:點、線、面間的距離計算
專題:計算題,空間位置關(guān)系與距離
分析:求出∴△A1B1D1中,AD1=2,AB1=
2
,B1D1=2,設(shè)A1到截面AB1D1的距離為h,利用等體積法求出A1到截面AB1D1的距離.
解答: 解:∵B1C和C1D 與底面所成角分別為30°和45°,AA1=1,
∴A1D1=
3
,A1B1=1,
∴△A1B1D1中,AD1=2,AB1=
2
,B1D1=2,
S△AB1D1=
1
2
×
2
×
4-
1
2
=
7
2
,
設(shè)A1到截面AB1D1的距離為h,則由等體積可得
1
3
×
1
2
×1×1×
3
1
3
×
7
2
h
,
∴h=
21
7

故選:D.
點評:本題主要考查了點到平面的距離,同時考查空間想象能力、推理與論證的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,且ab=50,則|a+2b|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(π+
π
6
)sin(2π+
π
6
)sin(3π+
π
6
)•…•sin(102π+
π
6
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2-4x-4,x∈[t,t+1](t∈R),求函數(shù)f(x)的最小值g(t)的解析式,并求g(t)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓m2+ny2=1與直線x+y=1交于M、N兩點,MN的中點P,且OP的斜率為
2
2
m
n
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二元一次方程組
2x+3y-1=0
-x+2y+3=0
的增廣矩陣是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐的底面半徑為5cm,高為10cm,當(dāng)它的內(nèi)接圓柱的底面半徑r為何值時?此圓柱兩底面積與側(cè)面積之和S有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長為10cm的線段AB上任取一點P,以AP為半徑作圓,使圓面積介于16cm2與49cm2之間的概率為( 。
A、
2
10
B、
3
10
C、
1
2
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
sinx
sinx+cosx
+
1
2
在點A(
π
4
,1)處的切線斜率為( 。
A、
1
2
B、-
2
2
C、
1
3
D、-
1
2

查看答案和解析>>

同步練習(xí)冊答案