如圖,將邊長(zhǎng)為2,有一個(gè)銳角為60°的菱形,沿著較短的對(duì)角線對(duì)折,使得

的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)求三棱錐的體積;

(Ⅲ)求二面角的余弦值.

 

(1)見解析;(2)1;(3)

【解析】

試題分析:(1)利用線面垂直的判斷定理證明線面垂直,條件齊全.(2)利用棱錐的體積公式求體積.(3)證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質(zhì)定理;三是平行線法(若兩條平行線中的一條垂直于這個(gè)平面,則另一條也垂直于這個(gè)平面.解題時(shí),注意線線、線面與面面關(guān)系的相互轉(zhuǎn)化.(4)在求三棱柱體積時(shí),選擇適當(dāng)?shù)牡鬃鳛榈酌,這樣體積容易計(jì)算.(5)空間向量將空間位置關(guān)系轉(zhuǎn)化為向量運(yùn)算,應(yīng)用的核心是要充分認(rèn)識(shí)形體特征,建立恰當(dāng)?shù)淖鴺?biāo)系,實(shí)施幾何問題代數(shù)化.同時(shí)注意兩點(diǎn):一是正確寫出點(diǎn)、向量的坐標(biāo),準(zhǔn)確運(yùn)算;二是空間位置關(guān)系中判定定理與性質(zhì)定理?xiàng)l件要完備.

試題解析:(Ⅰ)連接,由已知得是等邊三角形,的中點(diǎn),

又邊長(zhǎng)為2,

由于,在中,

,

(Ⅱ),

(Ⅲ)解法一:過,連接AE,

,

即二面角的余弦值為.

解法二:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,則

顯然,平面的法向量為

設(shè):平面的法向量,

,,

∴二面角的余弦值為.

考點(diǎn):(1)空間中線面垂直的判定;(2)三棱錐的體積公式;(3)利用空間向量證明線線垂直和求夾角.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

若復(fù)數(shù)滿足 (其中為虛數(shù)單位),則復(fù)數(shù)為 ( ).

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期末考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

下列命題是真命題的是

A.若,則 B.若,則

C.若,則 D.若,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期中考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

的展開式中含項(xiàng)的系數(shù)

A.30 B.70 C.90 D.150

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期中考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

個(gè)人排成一行,其中甲、乙兩人不相鄰的不同排法共有

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二上學(xué)期期末考理科數(shù)學(xué)試卷(解析版) 題型:填空題

直線與曲線相切,則切點(diǎn)的坐標(biāo)為 ..

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二上學(xué)期期末考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的單調(diào)增區(qū)間是

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的右焦點(diǎn)是拋物線的焦點(diǎn),兩曲線的一個(gè)公共

點(diǎn)為,且,則雙曲線的離心率為

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省晉江市高二下學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:填空題

定義:區(qū)間[x1,x2](x1<x2)的長(zhǎng)度為x2-x1,已知函數(shù)y=|的定義域?yàn)閇a,b],值域?yàn)閇1,2],則區(qū)間[a,b]的長(zhǎng)度的最大值與最小值的差為________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案