計算:
lim
n→∞
C
0
2n
+
C
2
2n
+
C
4
2n
+…+
C
2n
2n
1-4n
=
 
考點(diǎn):數(shù)列的極限
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:直接利用二項式定理系數(shù)的性質(zhì)求出所求極限的否則的值,然后利用數(shù)列極限的運(yùn)算法則求法即可.
解答: 解:
C
0
2n
+
C
2
2n
+…+
C
2n
2n
=22n-1,
原式=
lim
n→∞
22n-1
1-4n
=
lim
n→∞
1
2(
1
4n
-1)
=-
1
2

故答案為:-
1
2
點(diǎn)評:本題考查數(shù)列的極限,二項式定理系數(shù)的性質(zhì),基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log2a-1(a2-2a+1)的值為正數(shù),則a的取值范圍是( 。
A、(0,2)
B、(0,
1
2
)∪(1,2)
C、(-∞,0)∪(2,+∞)
D、(
1
2
,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時,函數(shù)解析式為f(x)=
1
4x
-
b
2x
(b∈R)
(Ⅰ)求b的值,并求出f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}中,a1=
1
2
,且an+1=1-
1
an
,則a15=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以點(diǎn)P到兩定點(diǎn)M(-1,0)、N(1,0)距離的比為
2
,點(diǎn)N到直線PM的距離為1,求直線PN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=x+
4
x
在(0,2]上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,若2c2=2a2+2b2+ab,則△ABC是( 。
A、等邊三角形
B、銳角三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an}滿足a2015=2a2013+a2014,若存在兩項am、an使得
aman
=4a1,則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足z•(1+i)=2i+1(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案