已知:數(shù)列{an}中,a1=
1
2
,且an+1=1-
1
an
,則a15=
 
考點(diǎn):數(shù)列的函數(shù)特性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:運(yùn)用遞推關(guān)系式求解數(shù)列a1=
1
2
,a2=1-2=-1,a3=1-
1
-1
=2,a4=1-
1
2
=
1
2
,根據(jù)周期可得答案.
解答: 解:∵數(shù)列{an}中,a1=
1
2
,且an+1=1-
1
an

∴a1=
1
2
,a2=1-2=-1,a3=1-
1
-1
=2,a4=1-
1
2
=
1
2

根據(jù)遞推關(guān)系式可判斷;數(shù)列{an}是周期為4的數(shù)列,
∴a15=a3=2,
故答案為:2
點(diǎn)評(píng):本題考察了數(shù)列的函數(shù)性,得出周期,運(yùn)用遞推關(guān)系式求解數(shù)列的部分項(xiàng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=
x-1
x+1
在點(diǎn)(-2,f(2))處的切線與直線ax+y+1=0垂直,則實(shí)數(shù)a=(  )
A、-
1
2
B、
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知6
AC
AB
=2
AB
BC
=3
BC
CA
,則∠A=(  )
A、30°B、45°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ω>0,函數(shù)f(x)=sin(ωx+
π
6
)
(
π
2
,π)
上單調(diào)遞減,則ω的取值范圍是( 。
A、[
2
3
4
3
]
B、[
2
3
,
3
4
]
C、(0,
2
3
]
D、(0,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1>0,S50=0.設(shè)bn=anan+1an+2(n∈N+),則當(dāng)數(shù)列{bn}的前n項(xiàng)和Tn取得最大值時(shí),n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2x-
a
x
在定義域(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
lim
n→∞
C
0
2n
+
C
2
2n
+
C
4
2n
+…+
C
2n
2n
1-4n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC中,若a2=b2-c2-
3
ac,則角B=(  )
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2=2,a3+a4=12,求:數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案