分析 (Ⅰ)由AB=AC,M是BC的中點,可得AM⊥BC,再由面面垂直的性質(zhì)可得AM⊥平面BCDE,進一步得到AM⊥ME;
(Ⅱ)由已知可得△BME的面積,得到△DCM的面積,求出梯形BCDE的面積,作差可得△DME的面積,結(jié)合(Ⅰ)知,AM⊥平面BCDE,即三棱錐A-DME的高AM=$2\sqrt{2}$.代入棱錐體積公式得答案.
解答 (Ⅰ)證明:∵AB=AC,M是BC的中點,
∴AM⊥BC,
∵平面BCDE⊥平面ABC,而平面BCDE∩平面ABC=BC,AM?平面ABC,
∴AM⊥平面BCDE,又EM?平面BCDE,
∴AM⊥ME;
(Ⅱ)解:∵BE∥CD,CD⊥BC,且四邊形BCDE是直角梯形,
∴${S}_{△BME}=\frac{1}{2}•BE•BM=\frac{1}{2}×4×2\sqrt{2}=4\sqrt{2}$.
${S}_{△DCM}=\frac{1}{2}{S}_{BME}=2\sqrt{2}$.
而梯形BCDE的面積${S}_{梯形BCDE}=\frac{1}{2}(4+2)×4\sqrt{2}=12\sqrt{2}$.
∴${S}_{△DME}={S}_{梯形BCDE}-{S}_{△DCM}-{S}_{△BEM}=6\sqrt{2}$.
由(Ⅰ)知,AM⊥平面BCDE,即三棱錐A-DME的高AM=$2\sqrt{2}$.
∴${V}_{A-DME}=\frac{1}{3}{S}_{△DME}•AM=\frac{1}{3}×6\sqrt{2}×2\sqrt{2}$=8.
點評 本題考查直線與平面垂直的性質(zhì),考查了空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.16 | B. | 0.34 | C. | 0.42 | D. | 0.84 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $-\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com