16.對任意復(fù)數(shù)ω1,ω2,定義ω121$\overline{{ω}_{2}}$,其中$\overline{{ω}_{2}}$是ω2的共軛復(fù)數(shù).
對任意復(fù)數(shù)z1,z2,z3,有如下三個命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3); ②(z1*z2)*z3=z1*(z2*z3); ③z1*z2=z2*z1;.
則真命題的個數(shù)是( 。
A.0B.1C.2D.3

分析 ①②③,利用定義ω121$\overline{{ω}_{2}}$,及共軛復(fù)數(shù)的定義、復(fù)數(shù)的運算性質(zhì)即可判斷出結(jié)論.

解答 解:①(z1+z2)*z3=(z1+z2)$\overline{{z}_{3}}$=z1$\overline{{z}_{3}}$+z2$\overline{{z}_{3}}$=(z1*z3)+(z2*z3),因此正確;
②(z1*z2)*z3=${z}_{1}\overline{{z}_{2}}\overline{{z}_{3}}$,z1*(z2*z3)=z1*$({z}_{2}\overline{{z}_{3}})$=z1$\overline{{z}_{2}\overline{{z}_{3}}}$=${z}_{1}\overline{{z}_{2}}{z}_{3}$,∴(z1*z2)*z3≠z1*(z2*z3),因此不正確;
③z1*z2=${z}_{1}\overline{{z}_{2}}$,z2*z1=${z}_{2}\overline{{z}_{1}}$,∴z1*z2≠z2*z1,因此不正確.
綜上可得:只有①正確.
故選:B.

點評 本題考查了新定義、共軛復(fù)數(shù)的定義、復(fù)數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個數(shù)列:①{an3};②{pan}(p為非零常數(shù));③{an•an+1};④{an+an+1}.其中是等比數(shù)列的序號為①②③.(填上所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知角α(-π≤α<π)的終邊過點P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),則α=$-\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正方形ABCD的邊長為2,邊AB,CD分別為圓柱上下底面的直徑,若一螞蟻從點A沿圓柱的表面爬到點C,則該螞蟻所走的最短路程為$\sqrt{{π^2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若銳角△ABC的面積為10,且AB=5,AC=8,則BC等于$\sqrt{89-40\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.正三角形ABC的邊長為1,設(shè)$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{BC}$=$\vec b$,$\overrightarrow{AC}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec b$•$\vec c$+$\vec c$•$\vec a$的值是( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足:an=n•3n(n∈N*),則此數(shù)列前n項和為Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有f[f(x)-$\frac{1}{x}$]=2,則f($\frac{1}{6}$)的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若鈍角三角形ABC三邊長分別是a,a+1,a+2,則a的取值范圍(1,3).

查看答案和解析>>

同步練習(xí)冊答案