【題目】已知拋物線的焦點為.
(1)過點的直線與拋物線相交于兩點,若,求直線的方程;
(2)點是拋物線上的兩點,點的縱坐標分別為1,2,分別過點作傾斜角互補的兩條直線交拋物線于另外不同兩點,求直線的斜率.
【答案】(1) ;(2)
【解析】
(1)設直線的方程為,將直線與拋物線聯(lián)立消去,根據(jù)韋達定理可得,,再由拋物線定義可得即可求解.
(2)求出點的坐標為,點的坐標為,分類討論①當兩條直線的傾斜角都為時,②當兩條直線的傾斜角都不為時,設直線的方程與設直線的方程,分別將直線與拋物線聯(lián)立,利用韋達定理,整理化簡即可求出直線的斜率.
(1)設直線的方程為,點的坐標分別為,,
聯(lián)立方程,消去整理為,則,,
所以,
由拋物線定義可得,,所以,
解得:,
故直線的方程為,即.
(2)由題意知,點的坐標為,點的坐標為,
①當兩條直線的傾斜角都為時,點的坐標為,點的坐標為
此時直線的斜率為,
②當兩條直線的傾斜角都不為時,設點的坐標為,點的坐標為,
此時直線的斜率為,
設直線的方程為,
聯(lián)立方程消去整理為,則,得,
設直線的方程為,
聯(lián)立方程消去整理為,
則,得,
所以,可得,
故直線的斜率為,
綜上,可得直線的斜率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮數(shù)列{an}(an∈Z)的前n項和為Sn,記S1,S2,…,Sn中奇數(shù)的個數(shù)為bn.
(1)若an=n,請寫出數(shù)列{bn}的前5項;
(2)求證:“a1為奇數(shù),ai(i=2,3,4,…)為偶數(shù)”是“數(shù)列{bn}是單調遞增數(shù)列”的充分不必要條件;
(3)若ai=bi,i=1,2,3,…,求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,直線l不經過坐標原點O且不平行與坐標軸,l與相交于A,B兩點,線段的中點為M.
(1)證明:直線的斜率與直線l的斜率的乘積為定值;
(2)若直線l過點,延長線與交于點P,若四邊形是平行四邊形,求直線l的斜率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,射線的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為.一只小蟲從點沿射線向上以單位/min的速度爬行
(1)以小蟲爬行時間為參數(shù),寫出射線的參數(shù)方程;
(2)求小蟲在曲線內部逗留的時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構數(shù)(個)與對應年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關指數(shù),給出下列結論,其中正確的個數(shù)是( )
①公共圖書館業(yè)機構數(shù)與年份的正相關性較強
②公共圖書館業(yè)機構數(shù)平均每年增加13.743個
③可預測 2019 年公共圖書館業(yè)機構數(shù)約為3192個
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調性;
(2)設,當函數(shù)與的圖象有三個不同的交點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】惠州市某商店銷售某海鮮,經理統(tǒng)計了春節(jié)前后50天該海鮮的日需求量(,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價處理,削價處理的海鮮每公斤虧損10元;若供不應求,可從其它商店調撥,調撥的海鮮銷售1公斤可獲利30元.假設商店該海鮮每天的進貨量為14公斤,商店銷售該海鮮的日利潤為元.
(1)求商店日利潤關于日需求量的函數(shù)表達式.
(2)根據(jù)頻率分布直方圖,
①估計這50天此商店該海鮮日需求量的平均數(shù).
②假設用事件發(fā)生的頻率估計概率,請估計日利潤不少于620元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com