已知等差數(shù)列{an}前四項(xiàng)之和為21,后四項(xiàng)之和為67,前幾項(xiàng)和Sn=121,求n.
考點(diǎn):等差數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由題意和等差數(shù)列的性質(zhì)可得a1+an=22,代入求和公式可得n的方程,解方程可得.
解答: 解:由題意可得a1+a2+a3+a4=21,an+an-1+an-2+an-3=67,
兩式相加結(jié)合等差數(shù)列的性質(zhì)可得4(a1+an)=21+67,
解得a1+an=22,由求和公式可得Sn=
n(a1+an)
2
=11n=121,
解得n=11
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=2x為雙曲線(xiàn)Γ:
x2
a2
-
y2
b2
=1
(a>0,b>0)的一條漸近線(xiàn),則雙曲線(xiàn)Γ的離心率為( 。
A、
3
2
B、
5
2
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b,c是△ABC的三邊,且a-b=c•cosB-c•cosA,則此三角形的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)=ax2+(b+1)x+c的定義域?yàn)椋╞,a-1),那么ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式
(1)2cos
π
2
+sin0-4sin
2
+cosπ;
(2)3cos0-tanπ+sin
π
2
-2cos
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求導(dǎo)函數(shù):y=
x2
(2x+1)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=sin
π
3
,b=cos
π
3
,c=
π
3
,d=tan
π
4
,則下列關(guān)系中正確的( 。
A、c>d>a>b
B、d>c>a>b
C、c>d>b>a
D、以上答案均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x+2,3),
b
=(x,1),當(dāng)f(x)=
a
b
取得最小值時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,頂點(diǎn)B(-1,0),C(1,0),G,I分別是△ABC的重心和內(nèi)心,且
IG
BC

(1)求頂點(diǎn)A的軌跡M的方程;
(2)過(guò)點(diǎn)C的直線(xiàn)交曲線(xiàn)M于P,Q兩點(diǎn),H是直線(xiàn)x=4上一點(diǎn),設(shè)直線(xiàn)CH,PH,QH的斜率為k1,k2,k3,試比較2k1與k2+k3的大小,并加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案