7.圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(θ∈[0,2π]),則圓C的圓心坐標為(0,2).

分析 求出圓的普通方程,然后求解圓的圓心坐標即可,

解答 解:圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(θ∈[0,2π]),它的普通方程為:x2+(y-2)2=4,
圓的圓心坐標為:(0,2).
故答案為:(0,2).

點評 本題考查圓的參數(shù)方程與普通方程的互化,圓心坐標的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知角α的終邊落在直線y=-3x上,則cos(π+2α)的值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$±\frac{3}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若實數(shù)x,y滿足x>y>0,且$\frac{1}{x-y}$+$\frac{8}{x+2y}$=1,則x+y的最小值為$\frac{25}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.極坐標為(1,π)的點M的直角坐標為( 。
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某學校記者團由理科組和文科組構成,具體數(shù)據(jù)如表所示:
組別理科文科
性別男生女生男生女生
人數(shù)3331
學校準備從中選4人到社區(qū)舉行的大型公益活動中進行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生,給其所在小組記2分,若要求被選出的4人中理科組、文科組的學生都有.
(Ⅰ)求理科組恰好記4分的概率;
(Ⅱ)設文科組男生被選出的人數(shù)為X,求隨機變量的分布列X和數(shù)學期望E(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知復數(shù)z1=1+3i,z2=3+i(i為虛數(shù)單位).在復平面內(nèi),z1-z2對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+2x+1,且f(x)在區(qū)間(-2,-1)內(nèi)存在單調遞減區(qū)間,則實數(shù)a的取值范圍(-∞,-2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.命題“若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$”( 。
A.當$\overrightarrow$≠0時成立B.當$\overrightarrow{c}$≠0時成立C.總成立D.當$\overrightarrow{a}$≠0時成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列各式的運算結果為純虛數(shù)的是( 。
A.i(1-i)2B.i2(1+i)C.(1-i)2D.i(1+i)

查看答案和解析>>

同步練習冊答案