分析 由(3+b)(sinA-sinB)=(c-b)sinC,a=3,利用正弦定理可得(a+b)(a-b)=(c-b)c,化簡利用余弦定理可得A,再利用余弦定理、基本不等式的性質(zhì)、三角形面積計算公式即可得出.
解答 解:∵(3+b)(sinA-sinB)=(c-b)sinC,a=3,
∴(a+b)(a-b)=(c-b)c,
∴b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$.
∴b2+c2=9+bc≥2bc,化為bc≤9,當且僅當b=c=3時取等號.
∴S△ABC=$\frac{1}{2}bcsinA$$≤\frac{1}{2}×9×sin\frac{π}{3}$=$\frac{9\sqrt{3}}{4}$.
故最大值為:$\frac{{9\sqrt{3}}}{4}$.
點評 本題考查了正弦定理余弦定理、基本不等式的性質(zhì)、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3或-1 | B. | 9或1 | C. | 1 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|sinx| | B. | y=tan|x| | C. | y=cosx | D. | y=-cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{3}{2}$i | D. | -$\frac{3}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com