已知角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊在x軸的正半軸,且終邊經(jīng)過點(diǎn)(1,2),則sinα的值為
 
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:可求得|OP|=
5
,由角的正弦的定義可得答案.
解答: 解:∵α的終邊經(jīng)過點(diǎn)P(1,2),
∴|OP|=
5

∴sinα=
2
5
=
2
5
5

故答案為:
2
5
5
點(diǎn)評(píng):本題考查任意角的三角函數(shù)的定義,掌握三角函數(shù)的定義是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為曲線y2=
3
4
x上任一點(diǎn),F(xiàn)1(-5,0),F(xiàn)2(5,0),則下列命題正確的是( 。
A、||PF1|-|PF2||≥8
B、||PF1|-|PF2||≤8
C、||PF1|-|PF2||>8
D、||PF1|-|PF2||<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為零的等差數(shù)列{an},滿足a3=5且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
anan+1
,記數(shù)列{bn}前n項(xiàng)的和為Tn,當(dāng)Tn≤λ恒成立時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(ax+3)2,(a∈R),求證:f(1),f(2)至少有一個(gè)大于或等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(7≤x≤11)時(shí),一年的銷售量為(12-x)2萬件.
(Ⅰ)求該分公司一年的利潤(rùn)L(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該分公司一年的利潤(rùn)L最大?并求出L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
3
-
3
2
t
y=-1+
1
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=
2
cos(θ+
π
4
)(極點(diǎn)與坐標(biāo)原點(diǎn)重合,極軸與x軸的正半軸重合).
(Ⅰ)求直線l被曲線C所截的弦長(zhǎng);
(Ⅱ)將曲線C以極點(diǎn)為中心,逆時(shí)針旋轉(zhuǎn)α角得到曲線C′.使得曲線C′與直線l相切,求α角的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+(a-1)x.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),試確定函數(shù)y=
1
4
a2-f(x)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t+3
y=3-t
(參數(shù)t∈R),圓C的參數(shù)方程為
x=cosθ
y=2sinθ+2
(參數(shù)θ∈[0,2π]),則圓C的圓心坐標(biāo)為
 
,圓心到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin
x
2
cos
x
2
+2cos2
x
2

(1)求函數(shù)f(x)的對(duì)稱軸;
(2)已知f(α)=
13
5
,α∈(
π
2
,π)  求sin(2α+
12
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案