7.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若不等式f(a)≥f(x)對任意x∈[1,2]恒成立,則實數(shù)a的取值范圍是(  )
A.(-∞,1]B.[-1,1]C.(-∞,2]D.[-2,2]

分析 偶函數(shù)f(x)在[0,+∞)上是減函數(shù),則不等式f(a)≥f(x)對任意x∈[1,2]恒成立,即不等式f(|a|)≥f(|x|)對任意x∈[1,2]恒成立,即可得到答案.

解答 解:由題意,偶函數(shù)f(x)在[0,+∞)上是減函數(shù),
則不等式f(a)≥f(x)對任意x∈[1,2]恒成立,即不等式f(|a|)≥f(|x|)對任意x∈[1,2]恒成立,
∴|a|≤|x|對任意x∈[1,2]恒成立,
∴|a|≤1,則-1≤a≤1
故選B.

點評 本題考查的知識點是奇偶性與單調(diào)性的綜合,其中根據(jù)已知條件及偶函數(shù)在對稱區(qū)間上單調(diào)性相反,得到函數(shù)的單調(diào)性是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在[50,100]內(nèi),發(fā)布成績使用等級制各等級劃分標(biāo)準(zhǔn)見下表,規(guī)定:A、B、C三級為合格等級,D為不合格等級.
百分制85分及以上70分到84分60分到69分60分以下
等級ABCD
為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.

(1)求n和頻率分布直方圖中x,y的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生中任選3人,求至少有1人成績是合格等級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,短軸長為2,直線l與圓O:x2+y2=$\frac{4}{5}$相切,且與橢圓C相交于M、N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)證明:$\overrightarrow{OM}$•$\overrightarrow{ON}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,ACQP所在的平面與菱形ABCD所在的平面相互垂直,交線為AC,若$AC=\sqrt{2}AP,E,F(xiàn)$分別是PQ,CQ的中點.求證:
(1)CE∥平面PBD;
(2)平面FBD⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)P(n,m)=${{\sum_{k=0}^{n}(-1)}^{k}C}_{n}^{k}\frac{m}{m+k}$,Q(n,m)=${C}_{n+m}^{m}$,其中m,n∈N*
(1)當(dāng)m=1時,求P(n,1),Q(n,1)的值;
(2)對?m∈N*,證明:P(n,m)•Q(n,m)恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}•\overrightarrow=\frac{1}{2}$,若$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,其中x>0,y>0且x+y=2,則|$\overrightarrow{c}$|最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ln(x+1),g(x)=$\frac{1}{2}$x2-x.
(Ⅰ)求過點(-1,0)且與曲線y=f(x)相切的直線方程;
(Ⅱ)設(shè)h(x)=af(x)+g(x),其中a為非零實數(shù),若y=h(x)有兩個極值點x1,x2,且x1<x2,求證:2h(x2)-x1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\ \frac{1}{x},x>0\end{array}\right.$,則f(f(-2))=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,若輸入的a,b的值分別為0和9,則輸出的i的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案