【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,它的一個頂點(diǎn)恰好是拋物線
的焦點(diǎn).
(1)求橢圓的方程;
(2)直線與橢圓交于
兩點(diǎn),
點(diǎn)位于第一象限,
是橢圓上位于直線
兩側(cè)的動點(diǎn).
(i)若直線的斜率為
,求四邊形
面積的最大值;
(ii)當(dāng)點(diǎn)運(yùn)動時,滿足
,問直線
的斜率是否為定值,請說明理由.
【答案】(I);(Ⅱ)(i)
;(ii)
的斜率為定值
.
【解析】
試題(I)設(shè)橢圓的方程為
,由條件利用橢圓的性質(zhì)求得
和
的值,可得橢圓
的方程.
(II)(i)設(shè)的方程為
,代入橢圓
的方程化簡,由△>0,求得
的范圍,再利用利用韋達(dá)定理可得
以及
的值.再求得
的坐標(biāo),根據(jù)四邊形
的面積
,計算求得結(jié)果.
(ii)當(dāng)時,C、
的斜率之和等于零,
的方程為
,把它代入橢圓
的方程化簡求得
.再把直線
的方程橢圓
的方程化簡求得
的值,可得
以及
的值,從而求得
的斜率
的值.
試題解析:設(shè)橢圓的方程為
,由題意可得它的一個頂點(diǎn)恰好是拋物線
的焦點(diǎn)
,
.
再根據(jù)離心率,求得
,∴橢圓C的方程為
.
(Ⅱ)(i)設(shè),
的方程為
,代入橢圓
的方程化簡可得
,由
,求得
.
利用韋達(dá)定理可得,
.
在中,令
求得
,∴四邊形
的面積
,
故當(dāng)時,四邊形
的面積
取得最小值為4.
(ii)當(dāng)時,
、
的斜率之和等于零,設(shè)
的斜率為
,則
的斜率為
,
的方程為
,把它代入橢圓
的方程化簡可得
,所以
.
同理可得直線的方程為
,
,
的斜率
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,0),B(0,1)在橢圓C: (a>b>0)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P是線段AB上的點(diǎn),直線y= x+m(m≥0)交橢圓C于M、N兩點(diǎn),若△MNP是斜邊長為
的直角三角形,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對邊,若A滿足2cos2A+cos(2A+ )=﹣
.
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面積為3 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對稱,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,則x﹣b的取值范圍是( )
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計了去年一年(52周)的銷售情況.
銷售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周數(shù) | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的銷售量的頻率為今年每周市場需求量的概率.
(1)要使進(jìn)貨量不超過市場需求量的概率大于0.5,問進(jìn)貨量的最大值是多少?
(2)如果今年的周進(jìn)貨量為14,寫出周利潤Y的分布列;
(3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為多少合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
,離心率為
,并過點(diǎn)
.
(1)求橢圓方程;
(2)若直線與橢圓
相交于
兩點(diǎn)(
不是左右頂點(diǎn)),且以
為直徑的圓過橢圓
的右頂點(diǎn)。求證:直線
過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形的兩條對角線相交于點(diǎn)
,
邊所在直線的方程為
,點(diǎn)
在
邊所在直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義為n個正數(shù)
的“均倒數(shù)”.已知正項數(shù)列{an}的前n項的“均倒數(shù)”為
.
(1)求數(shù)列{an}的通項公式.
(2)設(shè)數(shù)列的前n項和為
,若4
<
對一切
恒成立試求實數(shù)m的取值范圍.
(3)令,問:是否存在正整數(shù)k使得
對一切
恒成立,如存在求出k值,否則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com