15.已知AD是△ABC的中線,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC\;}$(λ,μ∈R),∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,則|${\overrightarrow{AD}}$|的最小值是1.

分析 運用向量的數(shù)量積的定義和中點的向量表示形式,及向量的平方即為模的平方,結(jié)合重要不等式即可得到最小值.

解答 解:設(shè)AC=b,AB=c,
又∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,
則bccos120°=-2,即有bc=4,
由AD是△ABC的中線,則有$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
即有|${\overrightarrow{AD}}$|2=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}$+${\overrightarrow{AC}}^{2}$+2$\overrightarrow{AB}•\overrightarrow{AC}$)
=$\frac{1}{4}$(b2+c2-4)≥$\frac{1}{4}$(2bc-4)=$\frac{1}{4}$×(8-4)=1.
當(dāng)且僅當(dāng)b=c時|${\overrightarrow{AD}}$|的最小值是為1,
故答案為:1.

點評 本題考查向量的數(shù)量積的定義和性質(zhì),主要考查向量的中點表示形式及向量的平方即為模的平方,運用重要不等式是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點A(-1,1)、B(1,5),則過A,B兩點的直線斜率等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為( 。
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若曲線C:y=ex-ax+1存在與直線3x+y=0平行的切線,則函數(shù)f(x)=x2-ax+2有2個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)1245
銷售額y(萬元)6142832
根據(jù)上表中的數(shù)據(jù)可以求得線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$中的$\widehatb$為6.6,據(jù)此模型預(yù)報廣告費用為10萬元時銷售額為(  )
A.66.2萬元B.66.4萬元C.66.8萬元D.67.6萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點分別為F1、F2,若在雙曲線C的右支上存在一點P滿足|PF1|=3|PF2|,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-a2,則雙曲線C的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)等差數(shù)列{an}的前n項和為Sn,且a2=2,S5=15,數(shù)列{bn}的前n項和為Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(1)求數(shù)列{an}的通項公式an及前n項和Sn;
(2)求數(shù)列{bn}的通項公式bn及前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}+2ax$.
(1)若函數(shù)f(x)是單調(diào)函數(shù)求實數(shù)a的值;
(2)當(dāng)a=1時,g(x)=f(x-1)-2x-b+1有兩個零點x1,x2(x1<x2).求證:x1+x2>4.

查看答案和解析>>

同步練習(xí)冊答案