9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,0<x<2}\\{{{(\frac{2}{3})}^x}+\frac{5}{9},x≥2}\end{array}}\right.$.若函數(shù)g(x)=f(x)-k有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是$(\frac{5}{9},1)$.

分析 由題意可得函數(shù)f(x)的圖象與直線y=k有二個(gè)不同的交點(diǎn),結(jié)合圖象求出實(shí)數(shù)k的取值范圍.

解答 解:由題意可得函數(shù)f(x)的圖象與直線y=k有二個(gè)不同的交點(diǎn),如圖所示:
故實(shí)數(shù)k的取值范圍是$(\frac{5}{9},1)$,
故答案為$(\frac{5}{9},1)$.

點(diǎn)評(píng) 本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)P在直線$l:\sqrt{3}x-y+2=0$上,點(diǎn)Q在圓C:x2+y2+2y=0上,則P、Q兩點(diǎn)距離的最小值為$\frac{1}{2}$   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,M是棱A1D1的中點(diǎn),過(guò)C1,B,M作正方體的截面,則這個(gè)截面的面積為( 。
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{8}$C.$\frac{9}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知離心率是$\sqrt{5}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)全集U={1,2,3,4},集合A={x|x2-5x+4<0,x∈Z},則∁UA={1,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a=sin$\frac{π}{5}$,b=log${\;}_{\sqrt{2}}$$\sqrt{3}$,c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$,則( 。
A.a<c<bB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知橢圓E的中心為原點(diǎn)O,焦點(diǎn)在x軸上,E上的點(diǎn)與E的兩個(gè)焦點(diǎn)構(gòu)成的三角形面積的最大值為12,直線4x+5y+12=0交橢圓于E于M,N兩點(diǎn).設(shè)P為線段MN的中點(diǎn),若直線OP的斜率等于$\frac{4}{5}$,則橢圓E的方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1}{1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“x2+5x-6>0”是“x>2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案