若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},則能使Q⊆(P∩Q)成立的所有實(shí)數(shù)a的取值范圍為(  )
分析:由題意可得 Q⊆P,故有
2a+1>3
2a+1<3a-5
3a-5≤22
,由此解得實(shí)數(shù)a的取值范圍.
解答:解:∵集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},Q⊆(P∩Q),∴Q⊆P.
2a+1>3
2a+1<3a-5
3a-5≤22
,解得 6<a≤9,
故選D.
點(diǎn)評(píng):本題主要考查集合關(guān)系中參數(shù)的取值范圍問(wèn)題,集合間的關(guān)系,兩個(gè)集合的交集的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、若集合P={x|3<x≤22},非空集合Q={x|a+1≤x<3a-5},則能使Q⊆(P∩Q)成立的所有實(shí)數(shù)a的取值范圍為
2<a≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},則能使Q(P∩Q)成立的所有實(shí)數(shù)a的取值范圍為(    )

A.(1,9)             B.[1,9]            C.[6,9]           D.(6,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},則能使Q⊆(P∩Q)成立的所有實(shí)數(shù)a的取值范圍為(  )
A.(1,9)B.[1,9]C.[6,9)D.(6,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市海曙區(qū)萬(wàn)里國(guó)際學(xué)校高一(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},則能使Q⊆(P∩Q)成立的所有實(shí)數(shù)a的取值范圍為( )
A.(1,9)
B.[1,9]
C.[6,9)
D.(6,9]

查看答案和解析>>

同步練習(xí)冊(cè)答案