如圖在一個(gè)二面角的棱上有兩個(gè)點(diǎn)A,B,線段AC,BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2
17
cm,則這個(gè)二面角的度數(shù)為( 。
A、30°B、60°
C、90°D、120°
考點(diǎn):二面角的平面角及求法
專題:空間位置關(guān)系與距離,空間角
分析:首先利用平行線做出二面角的平面角,進(jìn)一步利用勾股定理和余弦定理解出二面角平面角的大小,最后確定結(jié)果.
解答: 解:在平面α內(nèi)做BE∥AC,BE=AC,連接DE,CE,
所以四邊形ACEB是平行四邊形.
由于線段AC,BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,
所以AB⊥平面BDE.
CE∥AB
CE⊥平面BDE.
所以△CDE是直角三角形.
又AB=4cm,AC=6cm,BD=8cm,CD=2
17
cm,
則:DE=2
13
cm
進(jìn)一步利用余弦定理:DE2=BE2+BD2-2BE•BDcos∠DBE
解得cos∠DBE=
1
2

所以∠DBE=60°
即二面角的度數(shù)為:60°
故選:B
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):余弦定理的應(yīng)用,勾股定理的應(yīng)用,線面垂直的性質(zhì),二面角的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
m
n
是兩個(gè)單位向量,其夾角為60°,求向量
a
=2
m
+
n
b
=2
n
-3
m
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=f(x)為一次函數(shù),f(0)=5,且函數(shù)圖象過(guò)點(diǎn)(-2,1),則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列判斷錯(cuò)誤的是( 。
A、“am2<bm2”是“a<b”的充分不必要條件
B、若f′(x0)=0,則x=x0是函數(shù)y=f(x)的極值點(diǎn)
C、函數(shù)y=f(x)滿足f(x+1)=f(1-x),則其圖象關(guān)于直線x=1對(duì)稱
D、定義在R上的函數(shù)y=f(x)滿足f(x+1)=-f(x),則周期為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某尋呼臺(tái)共有客戶3000人,若尋呼臺(tái)準(zhǔn)備了100份小禮品,邀請(qǐng)客戶在指定時(shí)間來(lái)領(lǐng)。僭O(shè)任一客戶去領(lǐng)獎(jiǎng)的概率為4%.問(wèn):尋呼臺(tái)能否向每一位顧客都發(fā)出獎(jiǎng)品邀請(qǐng)?若能使每一位領(lǐng)獎(jiǎng)人都得到禮品,尋呼臺(tái)至少應(yīng)準(zhǔn)備多少禮品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,AD⊥DB,其中三棱錐P-BCD的三視圖如圖所示,且sin∠BDC=
3
5


(I)求證:AD⊥PB;
(Ⅱ)若PA與平面PCD所成角的正弦值為 
12
13
65
,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖如圖,則該幾何體是 (  )
A、圓柱B、圓錐C、圓臺(tái)D、球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在10支鉛筆中,有8支正品和2支次品,現(xiàn)從中任取1支,則取得次品的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)g(x)=log2x,關(guān)于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)內(nèi)有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,4-2
7
)∪(4+2
7
,+∞)
B、(4-2
7
,4+2
7
C、(-
3
4
,-
2
3
D、(-
3
2
,-
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案