14.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)設PD=AD=1,求點D到平面PBC的距離.

分析 (1)證明BD⊥AD.又PD⊥底面ABCD,所以BD⊥PD.可得BD⊥平面PAD,即可證明PA⊥BD;
(2)作DE⊥PB,垂足為E.已知PD⊥底面ABCD,故PD⊥BC,由DE•PB=PD•BD,得DE,即可求點D到平面PBC的距離.

解答 (1)證明:因為∠DAB=60°,AB=2AD,
由余弦定理,得BD=$\sqrt{3}$AD.
所以BD2+AD2=AB2,故BD⊥AD.
又PD⊥底面ABCD,所以BD⊥PD.
所以BD⊥平面PAD,故PA⊥BD.
(2)解:如圖,作DE⊥PB,垂足為E.已知PD⊥底面ABCD,故PD⊥BC.
由(1)知BD⊥AD,因為BC∥AD,所以BC⊥BD.
所以BC⊥平面PBD,BC⊥DE.則DE⊥平面PBC,
即DE為棱錐D-PBC的高.由PD=AD=1知BD=$\sqrt{3}$,PB=2.
由DE•PB=PD•BD,得DE=$\frac{\sqrt{3}}{2}$.所以點D到平面PBC的距離為$\frac{\sqrt{3}}{2}$.

點評 本題考查線面垂直的判定與性質,考查點到平面距離的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知a,b>0且a+b=2,求證:$\sqrt{2a+1}$+$\sqrt{2b+1}$≤2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知a,b∈Z,“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為152.6 和169.8,若從中選取一個擬合程度較好的函數(shù)模型,應選殘差平方和為152.6的那個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{e}$為平面向量,若|$\overrightarrow{e}$|=1,$\overrightarrow{a}$•$\overrightarrow{e}$=1,$\overrightarrow$•$\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|的最小值為3,$\overrightarrow{a}$•$\overrightarrow$的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.閱讀如圖所示的程序框圖,輸出的結果S的值為( 。
A.0B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$\overrightarrow a$=(2,3),$\overrightarrow b$=(-2,4),求:
(Ⅰ)$\overrightarrow a$+2$\overrightarrow b$和$\overrightarrow a$-$\overrightarrow b$的坐標;
(Ⅱ)(${\overrightarrow a$+2$\overrightarrow b}$)•(${\overrightarrow a$-$\overrightarrow b}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.閱讀如圖的程序框圖,若輸入n=6,則輸出k的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-4ln(x-1),a∈R
(1)若$a=\frac{1}{2}$,求曲線f(x)在點(2,f(2))處的切線方程;
(2)已知點P(1,1)和函數(shù)f(x)圖象上的動點M(mf(m)),對任意m∈[2,e+1],直線PM傾斜角都是鈍角,求a的取值范圍.

查看答案和解析>>

同步練習冊答案