2.已知a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx,則二項式($\sqrt{t}$-$\frac{a}{6t}$)a展開式中的常數(shù)項是15.(填數(shù)值)

分析 求定積分得到a值,然后寫出二項展開式的通項,由x得指數(shù)為0求得r值,則答案可求.

解答 解:∵a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx=$3{x}^{\frac{5}{3}}$${|}_{-1}^{1}$=6.
∴($\sqrt{t}$-$\frac{a}{6t}$)a =($\sqrt{t}$-$\frac{1}{t}$)6 ,
由${T}_{r+1}={C}_{6}^{r}(\sqrt{t})^{6-r}(-\frac{1}{t})^{r}=(-1)^{r}{C}_{6}^{r}{t}^{\frac{6-3r}{2}}$,
取6-3r=0,得r=2.
∴二項式($\sqrt{t}$-$\frac{a}{6t}$)a展開式中的常數(shù)項是${C}_{6}^{2}=15$.
故答案為:15.

點(diǎn)評 本題考查定積分的求法,考查了二項式系數(shù)的性質(zhì),關(guān)鍵是熟記二項展開式的通項,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$,x∈R.
(I)求函數(shù)f(x)的最小正周期T及在[-π,π]上的單調(diào)遞減區(qū)間.
(II)在△ABC中,邊a,b,c的對角分別為A,B,C,已知A為銳角,a=3$\sqrt{3}$,c=6,且f(A)是函數(shù)f(x)在[0,$\frac{π}{2}}$]上的最大值,求△ABC面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個命題正確的是(  )
①在線性回歸模型中,$\stackrel{∧}{e}$是$\stackrel{∧}$x+$\stackrel{∧}{a}$預(yù)報真實(shí)值y的隨機(jī)誤差,它是一個觀測的量
②殘差平方和越小的模型,擬合的效果越好
③用R2來刻畫回歸方程,R2越小,擬合的效果越好
④在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適,若帶狀區(qū)域?qū)挾仍秸f明擬合精度越高,回歸方程的預(yù)報精度越高.
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題:
(1)若一條直線與兩個平行平面中的一個平行,那么它也與另一個平面平行;
(2)若平面α內(nèi)有不共線的三點(diǎn)到平面β的距離相等,則α∥β;
(3)過平面α外一點(diǎn)和平面α內(nèi)一點(diǎn)與平面α垂直的平面只有一個;
(4)若平面α⊥平面β,α∩β=b,直線a?α,α⊥β,則a∥α.
其中正確的有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,且a1=2,Sn=2an+k,等差數(shù)列{bn}的前n項和為Tn,且Tn=n2
(1)求k和Sn
(2)若cn=an•bn,求數(shù)列{cn}的前n項和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知某幼兒園大班有30名幼兒,從中抽取6名,分別統(tǒng)計他們的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示,則該樣本的方差為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.①:關(guān)于x的不等式x2+(a-1)x+a2>0的解集是R;②:函數(shù)f(x)=x3+4ax-2在[1,+∞)上是增函數(shù),已知“命題①或命題②”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.($\sqrt{26}$+5)2n+1的小數(shù)表示中,小數(shù)點(diǎn)后至少連續(xù)有( 。
A.2n+1個零B.2n+2個零C.2n+3個零D.2n+4個零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin($\frac{1}{3}$x+$\frac{π}{4}$),x∈R的最小正周期為( 。
A.B.πC.D.

查看答案和解析>>

同步練習(xí)冊答案