點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是________.

(x-2)2+(y+1)2=1
分析:設(shè)圓上任意一點為A,確定A與AP中點坐標(biāo)之間的關(guān)系,再代入圓的方程,即可得到結(jié)論.
解答:設(shè)圓上任意一點為A(x1,y1),AP中點為(x,y),
,∴
代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.
故答案為:(x-2)2+(y+1)2=1
點評:本題考查軌跡方程,考查代入法的運用,確定坐標(biāo)之間的關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是(  )
A、(x-2)2+(y+1)2=1B、(x-2)2+(y+1)2=4C、(x+4)2+(y-2)2=1D、(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是
(x-2)2+(y+1)2=1
(x-2)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是              (  )

A.(x-2)2+(y+1)2=1            B.(x-2)2+(y+1)2=4

C.(x+4)2+(y-2)2=1               D.(x+4)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:單選題

點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是( 。
A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=1D.(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=1
D.(x+2)2+(y-1)2=1

查看答案和解析>>

同步練習(xí)冊答案