設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,Sn=(對(duì)于所有n1),且a4=54,則a1的數(shù)值是________ [

答案:2
提示:

根據(jù)an=

  可得a4=S4-S3=

  即a4=33·a1,又由a4=54

  得27a1=54,故a1=2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a1=5,a4=-1;設(shè)數(shù)列{丨an丨}的前n項(xiàng)和為Sn,則S6=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d(a1∈Z,d∈Z),前n項(xiàng)的和為Sn,且S7=49,24<S5<26.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
1anan+1
}
的前n項(xiàng)的和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=nan-2n(n-1).
(Ⅰ)求a2,a3,a4,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{{
1anan+1
}
}的前n項(xiàng)和為Tn,試求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=nan-2n(n-1).
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求出an的表達(dá)式;
(Ⅱ)設(shè)數(shù)列{
1anan+1
}的前n項(xiàng)和Tn,試求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=4-an-.

(1)試求an+1與an的關(guān)系;(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案