分析 (1)利用關(guān)系式求出f(1),f(2),利用待定系數(shù)法求出f(x);
(2)求出a的值,判斷g(f(x))的單調(diào)性,根據(jù)單調(diào)性得出g(f(x))在[-1,1]上的最小值,從而得出k的范圍.
解答 解:(1)∵f(x+1)-f(x)=2x+5,
∴f(1)-f(0)=5,f(2)-f(1)=7,
又f(0)=1,∴f(1)=6,f(2)=13.
設(shè)f(x)=mx2+bx+c,
則$\left\{\begin{array}{l}{c=1}\\{m+b+c=6}\\{4m+2b+c=13}\end{array}\right.$,解得m=1,b=4.
∴f(x)=x2+4x+1.
(2)∵g(2)=a2=$\frac{1}{4}$,∴a=$\frac{1}{2}$.
∴g[f(x)]=($\frac{1}{2}$)${\;}^{{x}^{2}+4x+1}$,
∵f(x)=x2+4x+1在[-1,1]上單調(diào)遞增,g(x)是減函數(shù),
∴g(f(x))在[-1,1]上是減函數(shù),
g(f(x))在[-1,1]上的最小值為g(f(1))=g(6)=$\frac{1}{{2}^{6}}$=$\frac{1}{64}$.
∵g[f(x)]≥k對(duì)x∈[-1,1]恒成立,
∴k≤$\frac{1}{64}$.
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),函數(shù)最值與恒成立問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 14 | C. | 20 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7π | B. | $\frac{25π}{2}$ | C. | 12π | D. | 25π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α∥β,m?α,n?β,則m∥n | |
B. | 若m,n?α,m∥β,n∥β,則α∥β | |
C. | m,n是異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β | |
D. | 若α∥β,m∥α,則m∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤2019? | B. | i<2019? | C. | i≤2017? | D. | i≤2018? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,3] | B. | [1,3] | C. | [1,4] | D. | [2,4] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com