【題目】已知圓C過原點且與相切,且圓心C在直線上.
(1)求圓的方程;(2)過點的直線l與圓C相交于A,B兩點, 且, 求直線l的方程.
【答案】(1)(2) x=2或4x-3y-2=0.
【解析】
試題(1)由題意圓心到直線的距離等于半徑, 再利用點到直線的距離公式解出圓心坐標和半徑即可.(2)由題知,圓心到直線l的距離為1.分類討論:當l的斜率不存在時,l:x=2顯然成立 ;若l的斜率存在時, 利用點到直線的距離公式,解得k ;綜上,直線l的方程為x=2或4x-3y-2=0.
(1)由題意設(shè)圓心,則C到直線的距離等于,, 解得, ∴其半徑
∴圓的方程為(6分)
(2)由題知,圓心C到直線l的距離. (8分)
當l的斜率不存在時,l:x=2顯然成立 (9分)
若l的斜率存在時,設(shè),由得,解得,
∴. (11分)
綜上,直線l的方程為x=2或4x-3y-2=0. (12分)
科目:高中數(shù)學 來源: 題型:
【題目】等邊的邊長為,點,分別是,上的點,且滿足 (如圖(1)),將沿折起到的位置,使二面角成直二面角,連接,(如圖(2)).
(1)求證:平面;
(2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:經(jīng)過點,A,B是拋物線C上異于點O的不同的兩點,其中O為原點.
(1)求拋物線C的方程,并求其焦點坐標和準線方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的左右焦點分別為,為橢圓上位于軸同側(cè)的兩點,的周長為,的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把五個標號為1到5的小球全部放入標號為1到4的四個盒子中,并且不許有空盒,那么任意一個小球都不能放入標有相同標號的盒子中的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com