【題目】某手機(jī)廠商在銷(xiāo)售某型號(hào)手機(jī)時(shí)開(kāi)展“手機(jī)碎屏險(xiǎn)”活動(dòng).用戶(hù)購(gòu)買(mǎi)該型號(hào)手機(jī)時(shí)可選購(gòu)“手機(jī)碎屏險(xiǎn)”,保費(fèi)為元,若在購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購(gòu)買(mǎi)該“手機(jī)碎屏險(xiǎn)”的用戶(hù)比例):
(1)根據(jù)上面的數(shù)據(jù)計(jì)算得,求出關(guān)于的線(xiàn)性回歸方程;
(2)若愿意購(gòu)買(mǎi)該“手機(jī)碎屏險(xiǎn)”的用戶(hù)比例超過(guò),則手機(jī)廠商可以獲利,現(xiàn)從表格中的種保費(fèi)任取種,求這種保費(fèi)至少有一種能使廠商獲利的概率.
附:回歸方程中斜率和截距的最小二乘估計(jì)分別為,
【答案】(1);(2)
【解析】
(1)利用回歸直線(xiàn)方程計(jì)算公式,計(jì)算出關(guān)于的線(xiàn)性回歸方程.
(2)利用列舉法和古典概型概率計(jì)算公式,計(jì)算出所求概率.
(1)由,,
,,
得
所以關(guān)于的回歸直線(xiàn)方程為.
(2)現(xiàn)從表格中的種保費(fèi)任選種,所有的基本事件有:
,,,,,,,,,,共有種.
其中至少有一種保費(fèi)能使廠商獲利的基本事件有:,,,,,,,共種.
所以從表格中的種保費(fèi)任選種,其中至少有一種保費(fèi)能使廠商獲利的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),其離心率為.
(1)求橢圓的方程;
(2)若不經(jīng)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),且,證明:直線(xiàn)經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,,,和是兩個(gè)邊長(zhǎng)為2的正三角形,,為的中點(diǎn),為的中點(diǎn).
(1)證明:平面.
(2)在線(xiàn)段上是否存在一點(diǎn),使直線(xiàn)與平面所成角的正弦值為?若存在,求出點(diǎn)的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在(1,f(1))處的切線(xiàn)方程;
(2)令求函數(shù)的極值.
(3)若,正實(shí)數(shù)滿(mǎn)足,
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家統(tǒng)計(jì)局統(tǒng)計(jì)了我國(guó)近10年(2009年2018年)的GDP(GDP是國(guó)民經(jīng)濟(jì)核算的核心指標(biāo),也是衡量一個(gè)國(guó)家或地區(qū)總體經(jīng)濟(jì)狀況的重要指標(biāo))增速的情況,并繪制了下面的折線(xiàn)統(tǒng)計(jì)圖.
根據(jù)該折線(xiàn)統(tǒng)計(jì)圖,下面說(shuō)法錯(cuò)誤的是
A. 這10年中有3年的GDP增速在9.00%以上
B. 從2010年開(kāi)始GDP的增速逐年下滑
C. 這10年GDP仍保持6.5%以上的中高速增長(zhǎng)
D. 2013年—2018年GDP的增速相對(duì)于2009年—2012年,波動(dòng)性較小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,,,,的面積為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)作與軸不重合的直線(xiàn)交橢圓于,兩點(diǎn),連接,分別交直線(xiàn)于,,兩點(diǎn),若直線(xiàn),的斜率分別為,,試問(wèn):是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形,底面,是棱的中點(diǎn),且,.
(1)求證:平面.
(2)求二面角的大。
(3)如果是棱的中點(diǎn),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是棱長(zhǎng)為2的正方體,為面對(duì)角線(xiàn)上的動(dòng)點(diǎn)(不包括端點(diǎn)),平面交于點(diǎn),于.
(1)試用反證法證明直線(xiàn)與是異面直線(xiàn);
(2)設(shè),將長(zhǎng)表示為的函數(shù),并求此函數(shù)的值域;
(3)當(dāng)最小時(shí),求異面直線(xiàn)與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓G的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓F:x2+y2﹣2x=0的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓G與直線(xiàn)l:x﹣my﹣1=0相交于A、B兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求△AOB面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com