【題目】已知橢圓的離心率為,,的面積為

1)求橢圓的方程;

2)過右焦點(diǎn)作與軸不重合的直線交橢圓兩點(diǎn),連接,分別交直線于,,兩點(diǎn),若直線,的斜率分別為,試問:是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.

【答案】(1);(2為定值,理由見解析

【解析】

1)結(jié)合橢圓離心率、的面積、列方程組,解方程組求得,由此求得橢圓的標(biāo)準(zhǔn)方程.

2)當(dāng)直線斜率不存在時(shí),求得兩點(diǎn)的坐標(biāo),由此求得直線的方程,進(jìn)而求得兩點(diǎn)的坐標(biāo),由此求得,,求得.當(dāng)直線斜率存在時(shí),設(shè)直線方程為,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,求得直線的方程,進(jìn)而求得兩點(diǎn)的坐標(biāo),由此求得,,結(jié)合韋達(dá)定理計(jì)算.由此證得為定值.

1)由題意得,

解得

所以橢圓的方程為.

2)由(1)知,,

①當(dāng)直線斜率不存在時(shí),直線方程為,

聯(lián)立,得

不防設(shè),

則直線方程為,

,得,則

此時(shí),,

同理

所以,

②當(dāng)直線斜率存在時(shí),設(shè)直線方程為,

聯(lián)立,得,

設(shè),,

,

直線方程為,

,得,則

同理,

所以,

所以

綜上所述,為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已如橢圓,四點(diǎn)中恰有三點(diǎn)在橢圓上.

1)求橢圓C的方程;

2)設(shè)不經(jīng)過左焦點(diǎn)的直線交橢圓于AB兩點(diǎn),若直線、、的斜率依次成等差數(shù)列,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,EAD中點(diǎn),FCC1中點(diǎn).

1)求證:ADD1F;

2)求證:CE//平面AD1F

3)求AA1與平面AD1F成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左右焦點(diǎn)為,上的動(dòng)點(diǎn),則下列結(jié)論正確的是(

A.B.離心率

C.面積的最大值為D.以線段為直徑的圓與直線相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)廠商在銷售某型號(hào)手機(jī)時(shí)開展手機(jī)碎屏險(xiǎn)活動(dòng).用戶購(gòu)買該型號(hào)手機(jī)時(shí)可選購(gòu)手機(jī)碎屏險(xiǎn),保費(fèi)為元,若在購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購(gòu)買該手機(jī)碎屏險(xiǎn)的用戶比例):

1)根據(jù)上面的數(shù)據(jù)計(jì)算得,求出關(guān)于的線性回歸方程;

2)若愿意購(gòu)買該手機(jī)碎屏險(xiǎn)的用戶比例超過,則手機(jī)廠商可以獲利,現(xiàn)從表格中的種保費(fèi)任取種,求這種保費(fèi)至少有一種能使廠商獲利的概率.

附:回歸方程中斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,點(diǎn)中點(diǎn),底面為梯形,,,.

(1)證明:平面;

(2)求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男生女生人數(shù)如表: 已知在全校學(xué)生中隨機(jī)抽取1名,抽到的是初二年級(jí)女生的概率是0.19.

初一年級(jí)

初二年級(jí)

初三年級(jí)

女生

373

x

y

男生

377

370

z

(1)求x的值.

(2)現(xiàn)用分層抽樣法在全校抽取48名學(xué)生,問應(yīng)在初三年級(jí)學(xué)生中抽取多少名?

(3)已知y245,z245,求初三年級(jí)女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:

對(duì)變量ty進(jìn)行相關(guān)性檢驗(yàn),得知ty之間具有線性相關(guān)關(guān)系.

1)求y關(guān)于t的線性回歸方程;

2)預(yù)測(cè)該地區(qū)2016年的居民人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的左、右焦點(diǎn)分別是,點(diǎn)的上頂點(diǎn),點(diǎn)上,,且.

1)求的方程;

2)已知過原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線且與橢圓交于兩點(diǎn),若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案